Research Summaries

Back Hydrogen Fuel in Support of Unmanned Operations in an EABO Environment

Fiscal Year 2022
Division Research & Sponsored Programs
Department Naval Research Program
Investigator(s) Beery, Paul T.
Lussier, Jonathan
Pollman, Anthony G.
Sponsor NPS Naval Research Program (Navy)
Summary Navy and Marine Corps planners developed the Expeditionary Advanced Base Operations (EABO) concept of operations to provide maritime commanders with more options for future sea control operations. Additionally, Littoral Operations in a Contested Environment (LOCE) is the concept for logistical support to multiple EABO sites. Finally, NAVPLAN 2020 and the Tri-Service Maritime Strategy detail the importance of unmanned systems capabilities to future warfighting. Many unmanned undersea and aerial systems currently in development are looking to alternative energy sources, including hydrogen, to maximize operational reach and persistence. The picture is clear, the future combat environment demands risk-worthy platforms to perform sea denial as a low-signature "inside force¿ that is untethered from a large petroleum supply chain. This study will assess hydrogen requirements for use as a fuel in an EABO environment to inform development of a capability evolution plan. This work will apply a holistic, systems engineering approach to develop a finite set of scenarios for hydrogen use as a fuel in an EABO environment. One scenario will be modelled to determine short, mid, and long-term requirements for: hydrogen generation and storage, fuel-cell numbers and capabilities, facilities, and safety or other '-ilities' of relevance. The goal is to investigate benefits and system of systems trade-offs with the objective of delaying fuel resupply to the greatest extent possible. This will inform identification of DOTMLPF gaps to hydrogen adoption as an enabler of EABO in LOCE and support development of a capability evolution plan. This work directly supports technology assessment & transition in support of ONR S&T objectives, as well as the analysis & assessment needs of OPNAV N-94, MCWL, and NECC. An interdisciplinary team of students and faculty from Systems Engineering, Mechanical Engineering, and Operations Research will contribute. Systems Engineering will lead the study.
Keywords
Publications Publications, theses (not shown) and data repositories will be added to the portal record when information is available in FAIRS and brought back to the portal
Data Publications, theses (not shown) and data repositories will be added to the portal record when information is available in FAIRS and brought back to the portal