Predicting the Drag on Ships with Biofouling

Karen A. Flack

Michael P. Schultz Jessica M. Walker Elizabeth A.K. Murphy

United States Naval Academy Annapolis, MD

Fundamental Issue

All surfaces are rough in the limit of high unit Reynolds number resulting in significant drag/performance penalties

FFG-7 at cruising speed – 15 kts

Description of Condition	∆ <i>SP</i> @ U _s = 7.7ms ⁻¹ (kW)	%∆SP @ U₅ = 7.7ms⁻¹		
hydraulically smooth surface				
typical as applied AF coating	50	2%		
deteriorated coating or light slime	250	11%		
heavy slime	458	21%		
small calcareous fouling or weed	781	35%		
medium calcareous fouling	1200	54%		
heavy calcareous fouling	1908	86%		

Schultz (2007) Biofouling

Fundamental Issue

All surfaces are rough in the limit of high unit Reynolds number resulting in significant drag/performance penalties

Hull fouling results in increased fuel cost of \$1 million per ship per year (2011)

Description of Condition	∆ <i>SP</i> @ U _s = 7.7ms ⁻¹ (kW)	%∆SP @ U _s = 7.7ms⁻¹		
hydraulically smooth surface				
typical as applied AF coating	50	2%		
deteriorated coating or light slime	250	11%		
heavy slime	458	21%		
small calcareous fouling or weed	781	35%		
medium calcareous fouling	1200	54%		
heavy calcareous fouling	1908	86%		

Schultz (2011) Biofouling

Accounting for Drag: Ship Resistance

Molland, et al. Ship Resistance and Propulsion, Cambridge University Press, 2017.

Accounting for Drag: Pipe Flow

	Pipe Material	Equivalent Roughness ε (mm)
	Riveted steel	0.9 - 9.0
	Concrete	0.3 - 3.0
	Wood stave	0.18 – 0.9
$\frac{\epsilon}{D}$	Cast iron	0.26
	Galvanized iron	0.15
	Commercial steel	0.045
	Drawn tubing	0.0015
	Plastic, glass	0.0 (smooth)

ε = k_s equivalent sandgrain roughness

Moody (1944), Colebrook (1939)

$$U^{+} = \frac{U}{U_{\tau}}$$
$$y^{+} = \frac{yU_{\tau}}{v}$$
$$U_{\tau} = \sqrt{\frac{\tau_{w}}{\rho}}$$

 ΔU^+ = Change in velocity due to drag from rough surface

Annapolis, MD

Lab Results to Ship Scale

- 72" x 36" x 48" PE Tank
- horizontal axis rotation
- 24" diameter drum
- panel capacity 8

- test panels mount along the length of the drum
- rotational speeds of 60 & 120 rpm (4 & 8 knots)
- timed lighting (18h light / 6h dark) & temperature control (25° C)
- · inoculated with diatoms collected from Florida bottom paints

Diatom genera present in biofilms: *Amphora, Achnanthes, Entomoneis* and *Navicula*

Designation Description

- Specimen A Silicone Fouling-Release System
- Specimen B Fluoropolymer Fouling-Release System

Specimen C Fluoropolymer Fouling-Release System (Slime Release)

High Reynolds number channel

- 2.5cm (H) x 20.3cm (W) x 3.25m (L)
- $U_e = 0.5 11.0 \text{ m/s}$
- $Re_m = 1.2 \times 10^4 3.1 \times 10^5$
- $Re_{\tau} = 350 6,100$ (smooth wall)
- 90H Development Region
- 10 pressure taps in fully developed region (τ_w +/- 1%)
- 6 replicate runs

Specimen C coverage = 6.4% thickness, *k* = 574 μm

3 months exposure

United States Naval Academy Annapolis, MD

Specimen A coverage = 14.2% thickness, *k* = 520 μm

> Specimen B coverage = 13.7% thickness, *k* = 433 μm

Specimen C coverage = 49.2% thickness, *k* = 98 μm

> Acrylic Control coverage = 27.8% thickness, *k* = 392 μm

6 months exposure

United States Naval Academy Annapolis, MD

3 months exposure

6 months exposure

k not effective by itself in collapsing the roughness function

Significant variability in roughness function behavior

Schultz, Walker, Steppe & Flack (2015) Biofouling 31: 759

United States Naval Academy Annapolis, MD

Effective hydraulic length scale appears to be related to biofilm thickness and % cover

$$k_s \approx k_{eff} = 0.055k(\% \operatorname{cover})^{\frac{1}{2}}$$

Schultz, Walker, Steppe & Flack (2015) Biofouling 31: 759

United States Naval Academy Annapolis, MD

Schultz, Walker, Steppe & Flack (2015) Biofouling 31: 759

United States Naval Academy Annapolis, MD

Onset of roughness effects seems to occur at $k_{eff}^{+} \sim 2-3$

Roughness functions don't exhibit the typical asymptotic behavior

% Coverage < 25%?

Schultz, Walker, Steppe & Flack (2015) Biofouling 31: 759

United States Naval Academy Annapolis, MD

Lab Results to Ship Scale

Scale Up of Results – 3 Months Exposure*

Surface	ΔSP (%) at 15 kts
Specimen A	6.3
Specimen B	4.8
Specimen C	1.5
Acrylic Control	6.2

*changes in shaft power are calculated with respect to the hydraulically-smooth condition

Predicted Increase in Shaft Power for DDG-51@ 15 knots

United States Naval Academy Annapolis, MD

Scale Up of Results – 6 Months Exposure*

Surface	ΔSP (%) at 15 kts
Specimen A	10.1
Specimen B	5.3
Specimen C	2.3
Acrylic Control	10.1

*changes in shaft power are calculated with respect to the hydraulically-smooth condition

Predicted Increase in Shaft Power for DDG-51@ 15 knots

United States Naval Academy Annapolis, MD

Table 1. Roughness parameters of the biofilm-fouled plate and the smooth plate.								
	U_{e} (m s ⁻¹)	δ (mm)	$\textit{Re}_{ au} = \delta^+ = \delta U_{ au} / v$	U_{τ} (m s ⁻¹)	∆U ⁺	k,+	k s (mm)	Cf
Smooth	1.2	33.5	1.64×10^{3}	0.047	-	-	-	2.9×10^{-3}
Biofilm	1.1	30.0	2.5×10^{3}	0.076	12.8	736	8.8	9.0×10^{-3}
δ^+ is the friction Reynold number.								

Murphy, et al. Biofouling (2019)

Heavy slime fouling

Three week biofilm, slight growth – Trial 3W3

Five week biofilm, moderate growth – Trial 5W3

Ten week biofilm, heavy growth - Trial 10W2

Ceccio, et al. ONR Program review 2019

Table 2. Tabulated data on the FFG-7 Oliver Perry class frigate (Schultz 2007). Data in the shaded columns are calculated for the tubeworm fouling.

Length(m)	v(m ² s ⁻¹)	C _A	<i>U</i> (m s ⁻¹)	Fr	Re	\bar{C}_{f}/C_{R}	$\% \Delta \bar{C}_{f}$	$\%\Delta R_{T}$
124	8.97×10 ⁻⁷	0.0004	Cruising Full-speed	7.7 15.4	0.22 0.44	1.06×10 ⁹ 2.13×10 ⁹	~0.7 ~3.3	46% 59%	23% 13%

Monty, et al. Biofouling (2016)

Conclusions

- Bio-films cause a significant drag penalty
 - ~10% increase in ship power for light slime
 - ~20% increase in ship power for heavy slime
- What else is needed to address questions
 - Additional lab experiments and numerical simulations of realistic ship hull roughness
 - Methods of in-situ measurements of ship hull roughness
 - Shear stress/boundary layer measurements over full scale ships with accurate documentation of surface roughness

10 11 12 13 14 15 16 17 18 19 20 21 22 23 2 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 66 6

Acknowledgements

- USNA Hydromechanics Lab
- USNA Technical Support Division
- Office of Naval Research
- Many roughness collaborators

Questions?

