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Description of Condition 
ΔSP 

@ Us = 7.7ms-1 
(kW) 

%ΔSP 
@ Us = 7.7ms-1 

hydraulically smooth surface -- -- 
typical as applied AF coating 50 2% 
deteriorated coating or light slime 250 11% 
heavy slime 458 21% 
small calcareous fouling or weed 781 35% 
medium calcareous fouling 1200 54% 
heavy calcareous fouling 1908 86% 

 

Fundamental Issue
All surfaces are rough in the limit of high unit Reynolds 
number resulting in significant drag/performance penalties

FFG-7 at cruising 
speed – 15 kts

Schultz (2007) Biofouling
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Description of Condition 
ΔSP 

@ Us = 7.7ms-1 
(kW) 

%ΔSP 
@ Us = 7.7ms-1 

hydraulically smooth surface -- -- 
typical as applied AF coating 50 2% 
deteriorated coating or light slime 250 11% 
heavy slime 458 21% 
small calcareous fouling or weed 781 35% 
medium calcareous fouling 1200 54% 
heavy calcareous fouling 1908 86% 

 

Fundamental Issue
All surfaces are rough in the limit of high unit Reynolds 
number resulting in significant drag/performance penalties

Schultz (2011) Biofouling

Hull fouling results in increased fuel cost 
of $1 million per ship per year (2011) 
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Accounting for Drag: Ship Resistance

Molland, et al. Ship Resistance and Propulsion, Cambridge University Press, 2017.

At cruise speed, frictional drag 
accounts for 70% or total drag

𝑪𝑻 =
𝑫𝒓𝒂𝒈
𝟏
𝟐𝝆𝑽

𝟐𝑨

𝑹𝒆 =
𝑽𝑳𝝆
𝝁

𝑭𝒓 =
𝑽
𝒈𝑳
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Accounting for Drag: Pipe Flow

Pipe Material Equivalent 
Roughness ε (mm)

Riveted steel 0.9 – 9.0

Concrete 0.3 – 3.0

Wood stave 0.18 – 0.9

Cast iron 0.26

Galvanized iron 0.15

Commercial steel 0.045

Drawn tubing 0.0015

Plastic, glass 0.0 (smooth)

Transitionally rough

Moody (1944), Colebrook (1939)

ε = ks
equivalent sandgrain

roughness
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Modeling Roughness/Predicting Drag
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𝑈3 =
𝑈
𝑈>

𝑦3 =
𝑦𝑈>
ν

𝑈> = @τB ρ

∆𝑈3= Change in velocity due to 
drag from rough surface
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Modeling Roughness/Predicting Drag
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Modeling Roughness/Predicting Drag
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𝑅𝑒H =
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Modeling Roughness/Predicting Drag
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Biofilm Roughness
• 72” x 36” x 48” PE Tank
• horizontal axis rotation
• 24” diameter drum
• panel capacity - 8

• test panels mount along the length of the drum
• rotational speeds of 60 & 120 rpm (4 & 8 knots)
• timed lighting (18h light / 6h dark) & temperature control (25⁰ C)

• inoculated with diatoms collected from Florida bottom paints
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Biofilm Roughness

Designation Description 

Specimen A Silicone Fouling-Release System 
Specimen B Fluoropolymer Fouling-Release System 
Specimen C Fluoropolymer Fouling-Release System (Slime Release) 

 

Diatom genera present
in biofilms: 
Amphora, Achnanthes, 
Entomoneis and Navicula
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High Reynolds number channel

• 2.5cm (H) x 20.3cm (W) x 3.25m (L)
• Ue = 0.5 – 11.0 m/s 
• Rem = 1.2 x 104 – 3.1 x 105

• Reτ = 350 – 6,100 (smooth wall)
• 90H Development Region
• 10 pressure taps in fully developed region (τw +/- 1%)
• 6 replicate runs

Bio-fouled  plate on top and 
bottom wall
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Biofilm Roughness
coverage = 19.6%
thickness, k = 545 μm 

coverage = 11.8%
thickness, k = 433 μm 

coverage = 18.1%
thickness, k = 527 μm 

coverage = 6.4%
thickness, k = 574 μm 

Specimen A

Specimen B

Specimen C

Acrylic Control

3 months exposure
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Biofilm Roughness
coverage = 14.2%
thickness, k = 520 μm 

coverage = 13.7%
thickness, k = 433 μm 

coverage = 27.8%
thickness, k = 392 μm 

coverage = 49.2%
thickness, k = 98 μm 

Specimen A

Specimen B

Specimen C

Acrylic Control

6 months exposure
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Biofilm Roughness

3 months exposure
Schultz, Walker, Steppe & Flack (2015) Biofouling 31: 759
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Biofilm Roughness

6 months exposure
Schultz, Walker, Steppe & Flack (2015) Biofouling 31: 759
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Schultz, Walker, Steppe & Flack (2015) Biofouling 31: 759

k not effective by itself in 
collapsing the roughness function

Significant variability in 
roughness function behavior

=
𝑘𝑈>
ν

ΔU
+
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Biofilm Roughness

Schultz, Walker, Steppe & Flack (2015) Biofouling 31: 759
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Effective hydraulic length scale 
appears to be related to biofilm 
thickness and % coverFully-rough Surfaces
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Biofilm Roughness

Schultz, Walker, Steppe & Flack (2015) Biofouling 31: 759
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Effective hydraulic length scale 
appears to be related to biofilm 
thickness and % cover

coverage = 49.2%
thickness, k = 98 μm 
ks = 35 μm

coverage = 27.8%
thickness, k = 392 μm 
ks = 115 μm   

Fully-rough Surfaces
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Schultz, Walker, Steppe & Flack (2015) Biofouling 31: 759

Onset of roughness effects 
seems to occur at keff

+ ~ 2-3

Roughness functions don’t 
exhibit the typical asymptotic 
behavior

% Coverage < 25%?

Transitionally-rough 
Surfaces
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Modeling Roughness/Predicting Drag
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Biofilm Roughness

Predicted Increase in Shaft Power for DDG-51@ 15 knots

Scale Up of Results – 3 Months Exposure*

*changes in shaft power 
are calculated with 
respect to the 
hydraulically-smooth 
condition 

Surface ΔSP (%)
at 15 kts

Specimen A 6.3

Specimen B 4.8

Specimen C 1.5

Acrylic Control 6.2
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Biofilm Roughness

Predicted Increase in Shaft Power for DDG-51@ 15 knots

Scale Up of Results – 6 Months Exposure*

*changes in shaft power 
are calculated with 
respect to the 
hydraulically-smooth 
condition 

Surface ΔSP (%)
at 15 kts

Specimen A 10.1

Specimen B 5.3

Specimen C 2.3

Acrylic Control 10.1
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Modeling Roughness/Predicting Drag

Murphy, et al. Biofouling (2019)

Heavy slime fouling

A B

y+
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Modeling Roughness/Predicting Drag
Heavy slime fouling

Three week biofilm, slight growth – Trial 3W3

Five week biofilm, moderate growth – Trial 5W3

Ten week biofilm, heavy growth – Trial 10W2
Ceccio, et al. ONR Program review 2019
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Modeling Roughness/Predicting Drag

Δ𝐶Q = 152 − 23% 

Ceccio, et al. ONR Program review 2019
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Modeling Roughness/Predicting Drag

Monty, et al. Biofouling (2016)

Light calcareous tubeworm fouling
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Conclusions
• Bio-films cause a significant drag penalty

– ~10% increase in ship power for light slime
– ~20% increase in ship power for heavy slime

• What else is needed to address questions
– Additional lab experiments and numerical simulations of realistic ship hull roughness 
– Methods of in-situ measurements of ship hull roughness 
– Shear stress/boundary layer measurements over full scale ships with accurate documentation 

of surface roughness
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