Predicting the Drag on Ships with Biofouling

Karen A. Flack
Michael P. Schultz
Jessica M. Walker
Elizabeth A.K. Murphy

United States Naval Academy
Annapolis, MD
Fundamental Issue

All surfaces are rough in the limit of high unit Reynolds number resulting in significant drag/performance penalties.

FFG-7 at cruising speed – 15 kts

<table>
<thead>
<tr>
<th>Description of Condition</th>
<th>ΔSP @ $U_s = 7.7\text{ms}^{-1}$ (kW)</th>
<th>%ΔSP @ $U_s = 7.7\text{ms}^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>hydraulically smooth surface</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>typical as applied AF coating</td>
<td>50</td>
<td>2%</td>
</tr>
<tr>
<td>deteriorated coating or light slime</td>
<td>250</td>
<td>11%</td>
</tr>
<tr>
<td>heavy slime</td>
<td>458</td>
<td>21%</td>
</tr>
<tr>
<td>small calcareous fouling or weed</td>
<td>781</td>
<td>35%</td>
</tr>
<tr>
<td>medium calcareous fouling</td>
<td>1200</td>
<td>54%</td>
</tr>
<tr>
<td>heavy calcareous fouling</td>
<td>1908</td>
<td>86%</td>
</tr>
</tbody>
</table>

Schultz (2007) *Biofouling*
Fundamental Issue

All surfaces are rough in the limit of high unit Reynolds number resulting in significant drag/performance penalties.

Hull fouling results in increased fuel cost of $1 million per ship per year (2011)

<table>
<thead>
<tr>
<th>Description of Condition</th>
<th>ΔSP @ $U_s = 7.7 ms⁻¹ (kW)</th>
<th>%ΔSP @ $U_s = 7.7 ms⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>hydraulically smooth surface</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>typical as applied AF coating</td>
<td>50</td>
<td>2%</td>
</tr>
<tr>
<td>deteriorated coating or light slime</td>
<td>250</td>
<td>11%</td>
</tr>
<tr>
<td>heavy slime</td>
<td>458</td>
<td>21%</td>
</tr>
<tr>
<td>small calcareous fouling or weed</td>
<td>781</td>
<td>35%</td>
</tr>
<tr>
<td>medium calcareous fouling</td>
<td>1200</td>
<td>54%</td>
</tr>
<tr>
<td>heavy calcareous fouling</td>
<td>1908</td>
<td>86%</td>
</tr>
</tbody>
</table>

Schultz (2011) Bio fouling
Accounting for Drag: Ship Resistance

At cruise speed, frictional drag accounts for 70% or total drag

\[C_T = \frac{\text{Drag}}{\frac{1}{2} \rho V^2 A} \]

\[\text{Re} = \frac{VL\rho}{\mu} \]

\[Fr = \frac{V}{\sqrt{gL}} \]

Accounting for Drag: Pipe Flow

Moody (1944), Colebrook (1939)

<table>
<thead>
<tr>
<th>Pipe Material</th>
<th>Equivalent Roughness ε (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riveted steel</td>
<td>0.9 – 9.0</td>
</tr>
<tr>
<td>Concrete</td>
<td>0.3 – 3.0</td>
</tr>
<tr>
<td>Wood stave</td>
<td>0.18 – 0.9</td>
</tr>
<tr>
<td>Cast iron</td>
<td>0.26</td>
</tr>
<tr>
<td>Galvanized iron</td>
<td>0.15</td>
</tr>
<tr>
<td>Commercial steel</td>
<td>0.045</td>
</tr>
<tr>
<td>Drawn tubing</td>
<td>0.0015</td>
</tr>
<tr>
<td>Plastic, glass</td>
<td>0.0 (smooth)</td>
</tr>
</tbody>
</table>

$\varepsilon = k_s$
equivalent sandgrain roughness

Moody (1944), Colebrook (1939)
Modeling Roughness/Predicting Drag

Turbulent boundary layer velocity profile

\[U^+ = \frac{1}{\kappa} \ln y^+ + B - \Delta U^+ \]

\[U^+ = \frac{U}{U_\tau} \]

\[y^+ = \frac{y U_\tau}{v} \]

\[U_\tau = \sqrt{\tau_w / \rho} \]

\[\Delta U^+ = \text{Change in velocity due to drag from rough surface} \]
Modeling Roughness/Predicting Drag

Turbulent boundary layer velocity profile

\[U^+ = \frac{1}{k} \ln y^+ + B - \Delta U^+ \]

Roughness function

\[k^+ = \frac{kU_\tau}{v} \]

Valid for a specific roughness

\[\Delta U^+ = f(k^+) \]

Computational models
Modeling Roughness/Predicting Drag

Turbulent boundary layer velocity profile

\[U^+ = \frac{1}{k_s} \ln y^+ + B - \Delta U^+ \]

\[\Delta U^+ = \frac{1}{k_s} \log k_s^+ + A - B \]

\[k_s^+ = \frac{k_s U_\tau}{v} \]

Fully rough asymptote

Valid for any roughness in fully rough regime

Computational models
Modeling Roughness/Predicting Drag

Turbulent boundary layer velocity profile

\[U^+ = \frac{1}{k} \ln y^+ + B - \Delta U^+ \]

\[\Delta U^+ = f(k^+) \]

Valid for a specific roughness

Computational models

\[\Delta U^+ = f(k_s^+) \]

Valid for any roughness in fully rough regime
Modeling Roughness/Predicting Drag

\[Re_L = \frac{L^+}{\sqrt{C_F} \left(1 - \frac{1}{\kappa \sqrt{C_F}} \right)} \]

Granville (1978, 1987)

Lab Results to Ship Scale
Modeling Roughness/Predicting Drag

\[\frac{2}{C_F}^{1/2} = -2.186 \ln \left(\frac{k_s}{L} \right) + 0.495 \]

Transitionally Rough Regime

Fully Rough Regime

Smooth

Karman-Schoenherr

Flack & Schultz (2010)
Biofilm Roughness

- 72” x 36” x 48” PE Tank
- horizontal axis rotation
- 24” diameter drum
- panel capacity - 8

- test panels mount along the length of the drum
- rotational speeds of 60 & 120 rpm (4 & 8 knots)
- timed lighting (18h light / 6h dark) & temperature control (25° C)
- inoculated with diatoms collected from Florida bottom paints
Biofilm Roughness

Diatom genera present in biofilms:
Amphora, Achnanthes, Entomoneis and Navicula

<table>
<thead>
<tr>
<th>Designation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen A</td>
<td>Silicone Fouling-Release System</td>
</tr>
<tr>
<td>Specimen B</td>
<td>Fluoropolymer Fouling-Release System</td>
</tr>
<tr>
<td>Specimen C</td>
<td>Fluoropolymer Fouling-Release System (Slime Release)</td>
</tr>
</tbody>
</table>
High Reynolds number channel

- 2.5cm (H) x 20.3cm (W) x 3.25m (L)
- $U_e = 0.5 – 11.0$ m/s
- $Re_m = 1.2 \times 10^4 – 3.1 \times 10^5$
- $Re_\tau = 350 – 6,100$ (smooth wall)
- 90H Development Region
- 10 pressure taps in fully developed region ($\tau_w +/ - 1\%$)
- 6 replicate runs
Biofilm Roughness

Specimen A
coverage = 19.6%
thickness, $k = 545 \, \mu m$

Specimen B
coverage = 11.8%
thickness, $k = 433 \, \mu m$

Specimen C
coverage = 6.4%
thickness, $k = 574 \, \mu m$

Acrylic Control
coverage = 18.1%
thickness, $k = 527 \, \mu m$

3 months exposure
Biofilm Roughness

Specimen A
coverage = 14.2%
thickness, $k = 520 \mu m$

Specimen B
coverage = 13.7%
thickness, $k = 433 \mu m$

Specimen C
coverage = 49.2%
thickness, $k = 98 \mu m$

Acrylic Control
coverage = 27.8%
thickness, $k = 392 \mu m$

6 months exposure
Biofilm Roughness

3 months exposure
Biofilm Roughness

6 months exposure

error bars represent total uncertainty at 95% confidence

C_f vs. Re_m
Biofilm Roughness

$k^+ = \frac{kU_\tau}{\nu}$

k not effective by itself in collapsing the roughness function

Significant variability in roughness function behavior

Biofilm Roughness

Effective hydraulic length scale appears to be related to biofilm thickness and % cover

\[k_s \approx k_{eff} = 0.055k(\%\text{cover})^{\frac{1}{2}} \]

Biofilm Roughness

Effective hydraulic length scale appears to be related to biofilm thickness and % cover

\[k_s \approx k_{\text{eff}} = 0.055k(\% \text{ cover})^{\frac{1}{2}} \]

- Coverage = 27.8%
 - Thickness, \(k = 392 \, \mu m \)
 - \(k_s = 115 \, \mu m \)

- Coverage = 49.2%
 - Thickness, \(k = 98 \, \mu m \)
 - \(k_s = 35 \, \mu m \)

Biofilm Roughness

Onset of roughness effects seems to occur at $k_{eff}^+ \sim 2-3$

Roughness functions don’t exhibit the typical asymptotic behavior

% Coverage < 25%?

Modeling Roughness/Predicting Drag

\[\Delta U^* / (\ln(10)/k) \]

\[Re_L = \frac{L^+}{\sqrt{C_F} \left(1 - \frac{1}{K \sqrt{C_F}} \right)} \]

Granville (1978, 1987)

Lab Results to Ship Scale
Biofilm Roughness

Scale Up of Results – 3 Months Exposure*

<table>
<thead>
<tr>
<th>Surface</th>
<th>ΔSP (%) at 15 kts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen A</td>
<td>6.3</td>
</tr>
<tr>
<td>Specimen B</td>
<td>4.8</td>
</tr>
<tr>
<td>Specimen C</td>
<td>1.5</td>
</tr>
<tr>
<td>Acrylic Control</td>
<td>6.2</td>
</tr>
</tbody>
</table>

*changes in shaft power are calculated with respect to the hydraulically-smooth condition

Predicted Increase in Shaft Power for DDG-51@ 15 knots
Biofilm Roughness

Scale Up of Results – 6 Months Exposure*

<table>
<thead>
<tr>
<th>Surface</th>
<th>ΔSP (%) at 15 kts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen A</td>
<td>10.1</td>
</tr>
<tr>
<td>Specimen B</td>
<td>5.3</td>
</tr>
<tr>
<td>Specimen C</td>
<td>2.3</td>
</tr>
<tr>
<td>Acrylic Control</td>
<td>10.1</td>
</tr>
</tbody>
</table>

*changes in shaft power are calculated with respect to the hydraulically-smooth condition

Predicted Increase in Shaft Power for DDG-51@ 15 knots
Modeling Roughness/Predicting Drag

Heavy slime fouling

Table 1. Roughness parameters of the biofilm-fouled plate and the smooth plate.

<table>
<thead>
<tr>
<th></th>
<th>U_2 (m s$^{-1}$)</th>
<th>δ (mm)</th>
<th>Re$^+$</th>
<th>ΔU^+</th>
<th>k_+^+</th>
<th>k_+ (mm)</th>
<th>C_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smooth</td>
<td>1.2</td>
<td>33.5</td>
<td>1.64 \times 103</td>
<td>0.047</td>
<td>–</td>
<td>–</td>
<td>2.9 \times 10$^{-3}$</td>
</tr>
<tr>
<td>Biofilm</td>
<td>1.1</td>
<td>30.0</td>
<td>2.5 \times 102</td>
<td>0.076</td>
<td>12.8</td>
<td>736</td>
<td>9.0 \times 10$^{-3}$</td>
</tr>
</tbody>
</table>

δ^+ is the friction Reynold number.

Modeling Roughness/Predicting Drag

Heavy slime fouling

Three week biofilm, slight growth – Trial 3W3

Five week biofilm, moderate growth – Trial 5W3

Ten week biofilm, heavy growth – Trial 10W2

Ceccio, et al. ONR Program review 2019
Modeling Roughness/Predicting Drag

Frictional Performance of Trial 3W2

\[\Delta C_f = 152 \%-23\% \]

\[\Delta C_f = 152 \%-23\% \]

Ceccio, et al. ONR Program review 2019
Modeling Roughness/Predicting Drag

Light calcareous tubeworm fouling

Table 2. Tabulated data on the FFG-7 Oliver Perry class frigate (Schultz 2007). Data in the shaded columns are calculated for the tubeworm fouling.

<table>
<thead>
<tr>
<th>Length (m)</th>
<th>(v) (m(^2)s(^{-1}))</th>
<th>(C_A)</th>
<th>(U) (m s(^{-1}))</th>
<th>(Fr)</th>
<th>(Re)</th>
<th>(\bar{C}_f/C_R)</th>
<th>(% \Delta \bar{C}_f)</th>
<th>(% \Delta R_T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>124</td>
<td>8.97 \times 10^{-7}</td>
<td>0.0004</td>
<td>Cruising</td>
<td>7.7</td>
<td>0.22</td>
<td>1.06 \times 10^9</td>
<td>~0.7</td>
<td>46%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full-speed</td>
<td>15.4</td>
<td>0.44</td>
<td>2.13 \times 10^9</td>
<td>~3.3</td>
<td>59%</td>
</tr>
</tbody>
</table>

Conclusions

• Bio-films cause a significant drag penalty
 – ~10% increase in ship power for light slime
 – ~20% increase in ship power for heavy slime

• What else is needed to address questions
 – Additional lab experiments and numerical simulations of realistic ship hull roughness
 – Methods of in-situ measurements of ship hull roughness
 – Shear stress/boundary layer measurements over full scale ships with accurate documentation of surface roughness
Acknowledgements

• USNA Hydromechanics Lab
• USNA Technical Support Division
• Office of Naval Research
• Many roughness collaborators

Questions?