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Abstract. The problem of pose estimation arises in many areas of computer
vision, including object recognition, object tracking, site inspection and updating,
and autonomous navigation using scene models. We present a new algorithm,
called SoftPOSIT, for determining the pose of a 3D object from a single 2D
image in the case that correspondences between model points and image points
are unknown. The algorithm combines Gold’s iterative SoftAssign algorithm [19,
20] for computing correspondences and DeMenthon’s iterative POSIT algorithm
[13] for computing object pose under a full-perspective camera model. Our
algorithm, unlike most previous algorithms for this problem,does not have to
hypothesize small sets of matches and then verify the remaining image points.
Instead,all possible matches are treated identically throughout the search for
an optimal pose. The performance of the algorithm is extensively evaluated in
Monte Carlo simulations on synthetic data under a variety of levels of clutter,
occlusion, and image noise. These tests show that the algorithm performs well in
a variety of difficult scenarios, and empirical evidence suggests that the algorithm
has a run-time complexity that is better than previous methods by a factor equal
to the number of image points. The algorithm is being applied to the practical
problem of autonomous vehicle navigation in a city through registration of a
3D architectural models of buildings to images obtained from an on-board camera.

Keywords: Object recognition, autonomous navigation, POSIT, SoftAssign

1 Introduction

We present an algorithm for solving themodel-to-image registration problem, which
determines the position and orientation (thepose) of a 3D object with respect to a
camera coordinate system given a model of the object with 3D reference points and a
single 2D image of these points. We assume no additional information to constrain the
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pose of the object or the correspondences. This is also known as thesimultaneous pose
and correspondence problem.

Automatic registration of 3D models to images is important for many applications,
including object recognition and tracking, site inspection and updating, and autonomous
navigation using scene models. The problem is difficult because it requires solution of
two coupled problems,correspondence andpose, each easy to solve only if the other
has been solved first:

1. Solving thepose problem consists of finding the rotation and translation of the
object with respect to the camera coordinate system. Given matching model and
image features, one can determine the pose that best aligns those matches. For 3 to 5
matches, the pose can be found in closed-form by solving polynomial equations [17,
24,37]. For six or more matches, linear and nonlinear approximate methods are
generally used [13,16,23,25,29].

2. Solving thecorrespondence problem requires matching image and model features.
If the object pose is known, one can determine such matches. Projecting the model
with known pose into the original image, one can match features that project suf-
ficiently close to an image feature. This is the approach typically taken for pose
verification [22].

The classic approach to solving these coupled problems is the hypothesize-and-test
approach [21] where a small set of correspondences are first hypothesized, and the
corresponding pose of the object is computed. Using this pose, the model points are
back-projected into the image. If the original and back-projected images are sufficiently
similar, the pose is accepted; else a new hypothesis is formed, and the process repeated.
The best known example of this approach is RANSAC [17] for the case that no informa-
tion is available to constrain the correspondences. When there areJ image points andK
model points1, and three correspondences are used to determine pose, a high probability
of success can be achieved by the RANSAC algorithm inO(KJ4) operations [11].

The problem we address occurs when taking a model-based approach to object-
recognition. (The other main approach to object recognition is appearance-based [31],
where multiple object views are compared to the image. However, since 3D models
are not used, accurate object pose is not recovered.) Many investigators (e.g., [8,9,15,
26,28,33]) approximate the nonlinear perspective projection via linear affine approxi-
mations. This is accurate when the relative depth of object features is small compared
to the distance of the object from the camera. Among the pioneer contributions were
Baird’s tree-pruning method [1], with exponential time complexity for unequal point
sets, and Ullman’s alignment method [35] with time complexityO(J4K3 logK). Ge-
ometric hashing is employed in [28] to determine an object’s identity and pose using
a hashing metric computed from image features; because the metric must be invariant
to camera viewpoint, the method can only be applied for affine camera models [5]. In
[12] an approach using a binary search by bisection of pose boxes in two 4D spaces
was used, extending the work of [1,6,7] on affine transforms, however the method was
computationally intensive. The approach of [27] is similar: An initial volume of pose

1 Many authors useN andM instead ofJ andK to denote the numbers of image and model
points.
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space is guessed, and all correspondences compatible with this volume are accounted
for. Then the pose volume is recursively reduced until it can be viewed as a single pose.

Few researchers have addressed the full perspective problem. The object recognition
approach of [2] extends the geometric hashing approach by using non-invariant image
features: off-line training is performed to learn 2D feature groupings associated with a
large number of views. An on-line recognition stage then uses new feature groupings to
index into a database of learned model-to-image correspondence hypotheses, and these
hypotheses are used for pose estimation and verification. In [36], the abstract problem is
formalized in a way similar to the present approach, as the optimization of an objective
function combining correspondence and pose. However, the correspondence constraints
are not represented analytically. Instead, each model feature is explicitly matched to the
closest line of sight of the image features. The closest 3D points on the lines of sight are
found for each model feature, and then the pose that brings the model features closest to
these 3D points is selected; this allows an easier 3D to 3D pose problem to be solved. The
process is repeated until a minimum is reached. A randomized pose clustering algorithm
is presented in [32] whose time complexity isO(KJ3). In this approach, instead of
testing each hypothesis as it is generated (as in the RANSAC approach), all hypotheses
are clustered in a pose space before back-projection and testing. This step is performed
only on high probability poses that are determined from the larger clusters.

A method related to ours is presented in [3] that uses random-start local search with
a hybrid pose estimation algorithm employing both full and weak perspective models. A
steepest descent search in the space of model-to-image line segment correspondences is
performed. A weak-perspective algorithm is used in ranking neighboring points in this
search space, and a full-perspective algorithm is used to update the model’s pose for new
correspondence sets. The empirical time complexity isO(K2J2).

Our approach, termed theSoftPOSIT algorithm, integrates the iterative pose tech-
nique called POSIT (Pose from Orthography and Scaling with ITerations) due to DeMen-
thon and Davis [13], and the iterative 2D to 2D or 3D to 3D correspondence assignment
technique calledSoftAssign due to Gold and Rangarajan [19,20]. A global objective
function is defined that captures the nature of the problem in terms of both pose and
correspondence, which are determinedsimultaneously by applying a deterministic an-
nealing schedule and by minimizing this global objective function at each step.

In the following sections, we describe each step of the method, and provide pseudo-
code for the algorithm. We then evaluate the algorithm using Monte Carlo simulations
with various levels of clutter, occlusion and image noise, and finally apply the algorithm
to some imagery of a city scene.

2 POSIT Algorithm

We summarize the original POSIT algorithm [13] and then present a variant that performs
closed-form minimization of an objective function. This function is modified below to
include the simultaneous pose and correspondence problem in one objective.

Consider a pinhole camera of focal lengthf and an image feature pointp with
Euclidean and homogeneous coordinatesx, y and (wx,wy,w), respectively;p is the
perspective projection of 3D pointP with homogeneous coordinates(X,Y, Z, 1) in the
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Fig. 1. Geometric interpretation of the POSIT computation. Image pointp′, the scaled orthographic
projection of world pointP , is computed by one side of the POSIT equations. Image pointp′′, the
scaled orthographic projection of pointPL on the line of sight ofp, is computed by the other side
of the equation. The equations are satisfied when the two points are superposed, which requires
that the world pointP be on the line of sight of image pointp. The plane of the figure is chosen
to contain the plane of the optical axis and the line of sightL. The pointsP0, P , P ′, andp′ are
generally out of the plane.

frame of an object with originP0. There is an unknown transformation between the
object and the camera coordinates, represented by a rotation matrixR = [R1 R2 R3]T

and a translation vectorT = (Tx, Ty, Tz). RT
1 , RT

2 , RT
3 are the row vectors ofR. They

are the unit vectors of the camera coordinate system expressed in the model system.T
is the vector from the center of projectionO of the camera to the originP0 expressed
in the camera coordinate system. The coordinates of the projectionp are related to the
world pointP by


wxwy
w


 =


fRT

1 fTx

fRT
2 fTy

RT
3 Tz


[P0P

1

]
,

whereP0P = (X,Y, Z)T is the vector fromP0 to P . The homogeneous image coor-
dinates are defined up to a multiplicative constant; therefore the validity of the equality
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is not affected if we multiply all elements of the projection matrix by1/Tz. Introducing
the scaling factors = f/Tz, we obtain[

wx
wy

]
=
[
sRT

1 sTx

sRT
2 sTy

] [
P0P
1

]
, w = R3 · P0P /Tz + 1. (1)

In Eq. 1 forw, R3 · P0P represents the projection ofP0P onto the optical axis.
When the depth range of the model along the optical axis is small compared to the model
distance,R3 · P0P is small compared toTz, andw � 1. Then, perspective projection
is well approximated byscaled orthographic projection (SOP) with scaling factors:[

x
y

]
=
[
sRT

1 sTx

sRT
2 sTy

] [
P0P
1

]
. (2)

The general perspective equation (1) can be rewritten as

[
X Y Z 1

] [sR1 sR2
sTx sTy

]
=
[
wx wy

]
. (3)

Assume the homogeneous coordinatew for each image pointp has been computed
at a previous step. We can then calculatewx,wy, and Eq. 3 relates the unknown pose
componentssR1, sR2, sTx, sTy, and the known image componentswx,wy and known
world coordinatesX,Y, Z. If we knowK world pointsPk, k = 1, . . . ,K, their image
pointspk, and their homogeneous componentswk, we can write two linear systems of
sizeK that can be solved for the unknown components ofsR1, sR2 andsTx andsTy,
provided at least four of the points of the model with given image points are noncoplanar.
After sR1 andsR2 are obtained, we gets, R1 andR2, by imposing thatR1 andR2 be
unit vectors, and thatR3 be the cross-product ofR1 andR2:

s = (|sR1| |sR2|)1/2, R1 = (sR1)/s, R2 = (sR2)/s, R3 = R1 × R2,

Tx = (sTx)/s, Ty = (sTy)/s, Tz = f/s.

To compute thewk required in the right-hand side of Eq. (3), we initially setwk = 1
for every pointpk (corresponding to a SOP model). Once we get the pose for this first
step, we compute better estimates for thewk using the expression forw in Eq. (1).
Then we can iteratively solve Eqs. (3) again to obtain progressively refined poses. This
iteration is stopped when the process becomes stationary.

3 Geometry and Objective Function

We consider a geometric interpretation of POSIT to represent it as minimization of an
objective function. Consider, as in Fig. 1, a pinhole camera with center of projection at
O, optical axis alongOz, an image planeΠ at distancef fromO, and an image center
at c. Consider an object, the origin of its coordinate system atP0, an object pointP ,
corresponding image pointp, and line of sightL throughp. The image pointp′ is the
SOP of object pointP . The image pointp′′ is the SOP of pointPL obtained by shifting
P to the line of sight ofp in a direction parallel to the image plane.
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One can show [14] that the image plane vector fromc to p′, is

cp′ = s(R1 · P0P + Tx,R2 · P0P + Ty).

In other words, the left-hand side of Eq. (3) represents the vectorcp′ in the image plane.
One can also show [14] that the image plane vector fromc to p′′ is cp′′ = (wx,wy) =
wcp. In other words, the right-hand side of Eq. (3) represents the vectorcp′′ in the
image plane. The image pointp′′ can be interpreted as a correction of the image pointp
from a perspective projection to a SOP of a pointPL located on the line of sight at the
same distance asP . P is on the line of sightL of p if, and only if, the image pointsp′

andp′′ are superposed. Thencp′ = cp′′, i.e. Eq. (3) is satisfied.
When we try to match the pointsPk of an object to the lines of sightLk of image

pointspk, it is unlikely that all or even any of the points will fall on their corresponding
lines of sight, or equivalently thatcp′

k = cp′′
k or p′

kp′′
k = 0. We can minimize a global

objective functionE equal to the sum of the squared distancesd2
k =| p′

kp′′
k |2 between

image pointsp′
k andp′′

k :

E =
∑

k

d2
k =

∑
k

∣∣cp′
k − cp′′

k

∣∣2 =
∑

k

((M · Sk − wkxk)2 + (N · Sk − wkyk)2) (4)

where, to simplify the subsequent notation, we introduce the vectors (with four homo-
geneous coordinates)Sk = (P0Pk, 1), and

M = (M1,M2,M3,M4) = s(R1, Tx), N = (N1, N2, N3, N4) = s(R2, Ty).

We call M andN the pose vectors. In Fig. 1, notice thatp′p′′ = sP ′P ′′ = sPPL.
Thus this corresponds to minimizing the scaled sum of squared distances of model points
along lines of sight, when distances are taken parallel to the image plane. This objective
function is minimized iteratively. Initially, thewk are all set to one. Then the following
two operations take place at each step:

1. Compute the pose vectorsM andN assumingwk are known (Eq. (4)).
2. Compute the correction termswk using theM andN just computed (Eq. (1) forw)).

We now focus on the pose vectorsM andN. The objective function is minimized when
the partial derivatives ofE with respect to the coordinates of the pose vectors vanish.
This condition provides4 × 4 linear systems forM andN with solutions

M = (
∑

k

SkST
k )−1(

∑
k

wkxkSk), N = (
∑

k

SkST
k )−1(

∑
k

wkykSk). (5)

The matrixL = (
∑

k SkST
k ) is a4 × 4 matrix that can be precomputed.

4 Pose Calculation with Unknown Correspondences

The pointp′′ can be viewed as the image pointp “corrected” for SOP usingw computed
at the previous step. The next step finds the pose such that the SOP of each pointP is as
close as possible to its corrected image point. Now when correspondences are unknown,
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each image pointpj can match any of the model pointsPk, and must be corrected using
thew corresponding toPk:

wk = R3 · P0Pk/Tz + 1. (6)

Therefore for each image and model pointpj andPk we generate a corrected image
pointp′′

jk, aligned with the image centerc and withpj , and defined by

cp′′
jk = wkcpj . (7)

The scaled orthographic projectionsp′
k of the pointsPk are

cp′
k =

[
M · Sk

N · Sk

]
. (8)

The squared distances between the corrected pointsp′′
jk and the SOPs are

d2
jk =

∣∣p′
kp′′

k

∣∣2 = (M · Sk − wkxj)2 + (N · Sk − wkyj)2. (9)

The simultaneous pose and correspondence problem can then be formulated as mini-
mization of the global objective function

E=
J∑

j=1

K∑
k=1

mjk d
2
jk =

J∑
j=1

K∑
k=1

mjk

(
(M · Sk − wkxj)2 + (N · Sk − wkyj)2

)
(10)

where themjk are weights, equal to zero or one, for each of thed2
jk, andJ andK are the

number of image and model points, respectively. Themjk are correspondence variables
that define the assignments between image and model feature points. Note that when
all the assignments are well-defined, this objective function becomes equivalent to the
objective function defined in Eq. (4).

This functionE is minimized iteratively, as follows:

1. Compute the correspondence variables assuming everything else is fixed (see below).
2. Compute the pose vectorsM andN assuming everything else is fixed (see below).
3. Compute the correctionswk using the computedM andN (described above).

4.1 Pose Problem

We now focus on finding the optimal posesM andN, assuming the correspondence
variablesmjk are known and fixed. As before, the minimizing pose vectors ofE at a
given step are those for which the partial derivatives ofE with respect to these vectors
vanish. This condition provides4 × 4 linear systems for the coordinates ofM andN
whose solutions are

[M,N]=

(
K∑

k=1

m′
kSkST

k

)−1

 J∑

j=1

K∑
k=1

(mjkwkxjSk),
J∑

j=1

K∑
k=1

(mjkwkyjSk)


 , (11)

withm′
k =

∑J
j=1 mjk. The termsSkST

k are4×4 matrices. ComputingM andN requires

inversion of a4 × 4 matrix,L = (
∑K

k=1 m
′
kSkST

k ), which is inexpensive.
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4.2 Correspondence Problem

We obtain the correspondence variablesmjk assuming that thed2
jk are known and fixed,

and minimizingE. Our aim is to find a zero-oneassignment matrix, M = {mjk}, that
specifies the matchings between a set ofJ image points and a set ofK model points, and
that minimizesE. This assignment matrixM has one row for each of theJ image points
pj and one column for each of theK model pointsPk. M must satisfy the constraint
that each image point match at most one model point, and vice versa. Aslack row J + 1
and aslack column K + 1 are added for points with no correspondences. A one in the
slack columnK + 1 at rowj indicates that the image pointpj has no match among the
model points. A one in the slack rowJ + 1 at columnk indicates that the feature point
Pk is not seen in the image.E will be a minimum if the assignment matrixM matches
image and model points with the smallest distancesd2

jk. This problem is solved by the
iterative SoftAssign technique [19,20]. We begin with a matrixM0 in which elementm0

jk

is initialized toexp(−β(d2
jk −α)), with β very small, and with all slack elements set to

a small constant. The parameterα determines how far apart two points must be before
being considered unmatchable (see [20]). The continuous match matrixM0 converges
to a discrete matrixM using two concurrent procedures:

1. Each row and column of the correspondence matrix is normalized, alternately, by
the sum of its elements. The resulting matrix then has positive elements with all
rows and columns summing to one. (see Sinkhorn [34])

2. The termβ is increased as the iteration proceeds. Asβ increases and each row
or column ofM0 is renormalized, the termsm0

jk corresponding to the smallest
d2

jk tend to converge to one while other elements tend to converge to zero. This is
a deterministic annealing process [18] known asSoftmax [4]. This is a desirable
behavior, since it leads to an assignment of correspondence to matches that satisfy
the matching constraints and whose sum of distances is minimized.

This procedure was called SoftAssign in [19,20]. The resultingM is the assignment
that minimizesE. This procedure along with the substeps that optimize pose and correct
image points by SOP are combined into the iteration loop of SoftPOSIT.

4.3 Pseudocode for SoftPOSIT

The SoftPOSIT algorithm can be summarized as follows:
Inputs:

1. A list of J image feature pointspj = (xj , yj).
2. A list of K world pointsSk = (Xk, Yk, Zk, 1) = (P0Pk, 1) in the object.

Initialize slack elements of assignment matrixM to γ = 1/(max{J,K} + 1), β to β0
(β0 ≈ 4 × 10−4 if the pose is unconstrained, larger if a good initial guess is available).
Initialize pose vectorsM andN with expected pose or a random pose.
Initialize wk = 1.
Do A until β > βfinal (βfinal around 0.5) (Deterministic annealing loop)
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– Compute squared distancesd2
jk = (M · Sk − wkxj)2 + (N · Sk − wkyj)2

– Computem0
jk = γ exp(−β(d2

jk − α))
– Do B until ∆M small (Sinkhorn’s method)

• Update matrixM by normalizing across all rows:m1
jk = m0

jk/
∑K+1

k=1 m0
jk

• Update matrixM by normalizing across all columns:m0
jk = m1

jk/
∑J+1

j=1 m1
jk

– End Do B
– Compute4 × 4 matrixL = (

∑K
k=1 m

′
kSkST

k ) with m′
k =

∑J
j=1 mjk

– ComputeL−1

– ComputeM = L−1(
∑J

j=1
∑K

k=1 mjkwk xjSk)
– ComputeN = L−1(

∑J
j=1

∑K
k=1 mjkwk yjSk)

– Computes = |(M1, M2, M3)|, R1 = (M1,M2,M3)/s, R2 = (N1, N2, N3)/s,
R3 = R1 × R2

– Computewk = R3 · P0Pk/Tz + 1
– β = βupdateβ (βupdate around1.05)

End Do A
Outputs: Rotation matrixR = [R1 R2 R3]T, translation vectorT = (Tx, Ty, Tz), and

assignment matrixM = {mjk} between image and world points.

5 Random Start SoftPOSIT

The SoftPOSIT algorithm described above performs a deterministic annealing search
starting from an initial guess for the object’s pose. There is no guarantee of finding
the global optimum. The probability of finding the globally optimal object pose and
correspondences starting from an initial guess depends on a number of factors including
the number of model points, the number of image points, the number of occluded model
points, the amount of clutter in the image, and the image measurement noise. A common
way of searching for a global optimum, and the one taken here, is to run the algorithm
starting from a number of different initial guesses, and keep the first solution that meets
a specified termination criteria. Our initial guesses range over[−π, π] for the three Euler
angles, and over a 3D space of translations containing the true translation.

Since each search for correspondence and pose is relatively expensive, we would like
to have a mathematical statement that allows us to make the claim that, for a given number
of starting points, our starting guesses sample the parameter space in some optimal man-
ner. Fortunately, there are a set of deterministic points that have such properties. These
are the quasi-random, or low discrepancy sequences [30]. Unlike points obtained from
a standard pseudo-random generator, quasi-random points are optimally self-avoiding,
and uniformly space filling. We use a standard quasi-random generator [10] to generate
quasi-random 6-vectors in a unit 6D hypercube. These points are scaled to reflect the
expected ranges of translation and rotation.

5.1 Search Termination

Ideally, one would like to repeat the search from a new starting point whenever the
number of correspondences determined is not maximal. However, one usually does not
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know what this maximal number is. Instead, we repeat the search when the number of
model points matching to image points is less than some thresholdtm. Due to occlusion
and imperfect image feature extraction, not all model points will be detected as features in
an image. Letpd be the ratio of the number of model points detected as image features to
the total number of model points (pd ∈ [0, 1]). In the Monte Carlo simulations described
below,pd is known. With real imagery, however,pd must be estimated based on the
scene complexity and the reliability of the feature detection algorithm used.

We terminate the search for better solutions when the current solution is such that
the number of model points matching to image points is greater than or equal to the
thresholdtm = ρpdK whereρ ∈ [0, 1] determines the fraction of model points to be
matched andK is the total number of model points.ρ accounts for measurement noise.
In the experiments discussed below, we takeρ = 0.8. This test is not perfect, as it is
possible for a pose to be very accurate even when the number of matched points is less
than this threshold; this occurs mainly in cases of high noise. Conversely, a wrong pose
may be accepted when the ratio of clutter features to detected model points is high.
However, these situations are uncommon.

5.2 Early Search Termination

The deterministic annealing loop of the SoftPOSIT algorithm iterates over a range of
values for the annealing parameterβk. In the experiments reported here,β0 is initialized
to 0.0004 and is updated according toβk+1 = 1.05 × βk, and the iteration ends when
βk > 0.5, or earlier if convergence is detected. This means that the annealing loop can
run for up to 147 iterations. It’s usually the case that, by viewing the original image and,
overlaid on top of this, the projected model points produced by SoftPOSIT, a person
can determine early on in the iteration (e.g., around iteration 30) whether or not the
algorithm is going to converge to the correct pose. It is desired that the algorithm make
this determination itself, so that it can end the current unfruitful search and restart.

A simple test is performed oneach iteration to determine if it should continue or
restart. At iterationk of SoftPOSIT, the match matrixMk = {mk

i,j} is used to predict
the final correspondences of model to image points: upon convergence we expect image
point i to correspond to model pointj if mk

i,j > mk
u,v for all u �= i and allv �= j

(however, this is not guaranteed). The number of predicted correspondences at iteration
k, nk, is the number of pairs(i, j) that satisfy this relation. We define the match ratio
on iterationk asrk = nk/(pdK) wherepd is defined above. This metric is commonly
used at the end of a local search to determine if the current solution for correspondence
and pose is good enough to end the search for the global optimum. We, however, use
this metric within the local search itself. LetCP denote the event that the SoftPOSIT
algorithm eventually converges to the correct pose. Then, the algorithm restarts after
thekth iteration ifP (CP | rk) < αP (CP ) where0 < α ≤ 1. That is, the search is
restarted from a new random starting condition whenever the posterior probability of
eventually finding a correct pose givenrk drops to less than some fraction of the prior
probability of finding the correct pose. A separate posterior probability is required for
eachk because the ability to predict the outcome usingrk improves as the iteration
progresses. Although this test may result in termination of some searches which would
eventually produce a good pose, it is expected on average that the total time required to
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find a good pose will be less. Our experiments show that this is true; we obtain a speedup
by a factor of at least two.

The posterior probability function for thekth iteration can be computed fromP (CP ),
the prior probability of finding a correct pose on one random local search, and from
P (rk | CP ) andP (rk | CP ), the probabilities of observing a particular match ratio on
thekth iteration given that the eventual pose is either correct or incorrect, respectively:

P (CP | rk) =
P (CP )P (rk | CP )

P (CP )P (rk | CP ) + P (CP )P (rk | CP )
.

P (CP ), P (CP ), P (rk | CP ), andP (rk | CP ) are estimated in Monte Carlo simula-
tions of the algorithm in which the number of model vertices and the levels of image
clutter, occlusion, and noise are all varied. To estimateP (rk | CP ) andP (rk | CP ), the
algorithm is repeatedly run on random test data. For each test, the values of the match
ratio rk computed at each iteration are recorded. Once an iteration completes, ground
truth information is used to determine whether or not the correct pose was found. If the
pose is correct, then the recorded values ofrk are used to update histograms representing
P (rk | CP ); otherwise, histograms forP (rk | CP ) are updated. Upon completing the
training, the histograms are normalized. See Fig. 2.
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Fig. 2. Probability functions estimated for (a) the first iteration, and (b) the 31st iteration, of the
SoftPOSIT algorithm.

6 Experiments

We investigate two important questions related to the performance of the SoftPOSIT
algorithm: (a) How often does it find a “good” pose? (b) How long does it take?
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6.1 Synthetic Data

The algorithm has been extensively evaluated in Monte Carlo simulations. The simula-
tions are characterized by 5 parameters:nt, K, pd, pc, andσ. The parameternt is the
number of trials performed for each combination of values for the remaining 4 param-
eters.K is the number of points in a 3D model.pd is the probability that the image
of any particular model point will be detected.pc is the probability that any particular
image point is clutter, i.e., is not the image of some 3D model point. Finally,σ is the
standard deviation of the normally distributed noise in the image coordinates of the
non-clutter feature points, measured in pixels for a1000 × 1000 image, generated by
a simulated camera having a 37 degree field of view (focal length of 1500 pixels). The
current tests were performed withnt = 100,K ∈ {20, 30, 40, 50}, pd ∈ {0.4, 0.6, 0.8},
pc ∈ {0.2, 0.4, 0.6}, andσ ∈ {0.5, 1.0, 2.5}. There were 10800 independent trials.

For each trial, a 3D model is created in which theK model vertices are randomly
located, with uniform probability, in a sphere centered at the origin. Because the al-
gorithm works with points, only the model vertices are important. However, to make
human interpretation of results easier, each model vertex is connected to the two closest
remaining model vertices. The model is placed with random rotation and translation in
the camera view. Each projected model point is detected with probabilitypd. We add
Gaussian noise (N (0, σ)) to bothx andy image coordinates. Finally,Kpd/(1−pc) ran-
domly located clutter feature points are added to the true feature points, so that100×pc

% of the feature points are clutter. Fig. 3 shows cluttered images of random models.
We consider a pose to begood when it allows 80% (ρ = 0.8 in section 5.1) or more

of the detected model points to be matched to image points. The number of random
starts for each trial was limited to 104. If a good pose is not found after 104 starts, the
algorithm declares failure. Fig. 4 shows two examples of the pose found.

Fig. 5 shows the success rate as a function of the number of model points for the case
ofσ = 2.5and for all combinations of the parameterspd andpc. (Due to space limitations,
we only describe results for the case ofσ = 2.5; the algorithm performs better for smaller
σ’s.) For more than 86% of the different combinations of simulation parameters, a good
pose is found in 95% or more of the associated trials. For the remaining 14% of the tests,
a good pose is found in 85% or more of the trials. (The overall success rate is 94%.)
As expected, the higher the occlusion rate (lowerpd) and the clutter rate (higherpc),
the lower the success rate. For the high-clutter and high-occlusion tests, the success rate
increases as the number of model points decreases. This is because a smaller number of
model points are more easily matched to clutter than a larger number of model points.
Fig. 6 shows the average number of random starts required to find a good pose. These
numbers generally increase with increasing image clutter and occlusion.

The run-time complexity of SoftPOSIT (for a single start) is easily seen to beO(JK)
whereJ is the number of image points andK is the number of model points. Our results
show that the mean number of random starts required to find a good pose, to ensure a
probability of success of at least 0.95 in all but the highest clutter and occlusion levels,
is bound by a function that is linear in the size of the input. That is, the mean number
of random starts isO(J), assuming thatK < J , as is normally the case. Then, the
run-time complexity of SoftPOSITwith random starts isO(KJ2). This is better than
any known algorithm that solves simultaneous pose and correspondence problem under
full perspective.
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Typical images of randomly generated models. The number of model points in the models
are 20 – (a), 30 – (b), 40 – (c) and (d), and 50 – (e) and (f). In all casespd = 1.0 andpc = 0.6.

(a) (b)

Fig. 4. Two cluttered images with projected models overlayed for which we found a good pose.
The black dots are the original image points; white dots are projections of model points for the
computed pose, and the gray lines are the initial guess that lead to the true pose being found.
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Fig. 5. Success rate as a function of the number of model points for fixed values ofpd andpc.
(Note thatpd andpc are denotedD andC, respectively, in the legend of this figure and in the next
few figures.)

20 30 40 50
0

200

400

600

800

1000

1200

Number of model points

M
ea

n 
nu

m
be

r 
of

 s
ta

rt
s

D = 0.8, C = 0.2
D = 0.8, C = 0.4
D = 0.8, C = 0.6
D = 0.6, C = 0.2
D = 0.6, C = 0.4
D = 0.6, C = 0.6
D = 0.4, C = 0.2
D = 0.4, C = 0.4
D = 0.4, C = 0.6

(a)

20 30 40 50
200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Number of model points

S
td

. d
ev

. n
um

be
r 

of
 s

ta
rt

s

D = 0.8, C = 0.2
D = 0.8, C = 0.4
D = 0.8, C = 0.6
D = 0.6, C = 0.2
D = 0.6, C = 0.4
D = 0.6, C = 0.6
D = 0.4, C = 0.2
D = 0.4, C = 0.4
D = 0.4, C = 0.6

(b)

Fig. 6. Number of random starts required to find a good pose as a function of the number of model
points for fixed values ofpd andpc. (a) Mean . (b) Standard deviation.

6.2 Experiments with Images

We applied the SoftPOSIT algorithm to imagery generated from a model of a district
of Los Angeles by a commercial virtual reality (VR) system. Fig. 7 shows an image
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generated and a world model projected into that image using the pose computed by
SoftPOSIT. Image feature points are automatically located in the image by detecting
corners along the boundary of bright sky regions. Because the 3D world model has over
100,000 data points, we use a rough pose estimate (as may be generated by a GPS system)
to cull the majority of model points that are far from the estimated field of view. The
world points that do fall into this estimated view are further culled by keeping only those
that project near the detected skyline. So far, the results have been very good, and could
be used for autonomous navigation. Although this is not real imagery, the VR system
used is advanced, and should give a good indication of how the system will perform on
real imagery.

(a) (b)

Fig. 7. (a) Original image from a virtual reality system. (b) World model (white lines) projected
into this image using the pose computed by SoftPOSIT.

7 Conclusions

We have developed and tested the SoftPOSIT algorithm for determining the correspon-
dence and pose of objects in an image. This algorithm will be used as a component
in an object recognition system. Our evaluation indicates that the algorithm performs
well under a variety of levels of occlusion, clutter, and noise. We are currently collecting
imagery and 3D models of city environments for the purpose of evaluating the algorithm
on real data.

The complexity of SoftPOSIT has been empirically determined to beO(KJ2). This
is better than any known algorithm that solves the simultaneous pose and correspondence
problem for a full perspective camera model. Rigorous validation of this claim is an item
of future work.
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