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Abstract

We show that the bounded error recognition problem for images of non-planar 3D objects
using point features can be decomposed into 1D search tasks, along lines joining the origin
of the object coordinate system to the feature points chosen to model the object. Points
are constructed along these lines at locations given by the coordinates of the detected image
points; concurrent bracketing of these points by segment tree search along each of these lines
provides maximal matchings between feature points and image points. Depth of search is
limited by pixel resolution. This method is well adapted to the task of tracking objects in
the presence of variable occlusions and clutter.

1 Introduction

The task considered here is model-based recognition and tracking using non-planar configura-
tions of point features to describe 3D objects. We formulate the problem with the techniques
introduced by Baird [1] and extended by Cass [4], Breuel [2, 3], and others [7, 8]. The ap-
proach consists of matching model features and image features to determine the pose of the
object, while assuming that there are spurious or missing image features, and uncertainties
in detecting these features. The image features are assumed to be located somewhere within
bounded regions around their detected locations; the problem posed with this uncertainty
model is sometimes called bounded error recognition problem. Authors have mostly applied
this model to the matching between 2D images and to the recognition of flat objects. One
of the major obstacles to the practical extension of past work to general non-planar objects
has been that the search in the general case has to be performed in an 8-dimensional trans-
formation space [4]. The proposed method reduces the search to a problem of 1D search by
segment trees along lines defined in the object model.

We introduce new equations for expressing the relationship between model points and
image points in a perspective model of projection, generalizing the formulation introduced
for iteratively computing object pose (the POSIT algorithm; see Appendix and [5]). These
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Figure 1: Perspective projections m; for object points M;

equations place the nonlinear terms of the transformation on the right hand side, in com-
bination with the image coordinate terms. The advantage of this formulation is that when
initial estimates are made for these nonlinear terms, the uncertainty in these estimates can
be modeled as additional image uncertainty. We obtain linear constraints for two 4D vectors
I and J proportional to the first and second rows of the homogeneous transformation ma-
trix of the object. These linear constraints represent slabs of space which are perpendicular
to feature vectors (joining the origin of the object coordinate system to the object feature
points) at points depending on the image coordinates of these feature points. Regions of
space where the largest numbers of slabs intersect correspond to maximal matchings between
object points and image points. To find these regions we adapt the binary tree search advo-
cated by Breuel [3] for this type of problem; however, with our formulation, the search can
be decomposed into 1D search tasks by segment trees [9] along the feature vectors. Simulta-
neous search tasks are performed for regions containing I and J, and are pruned by mutual
constraints resulting from the fact that I and J belong to slabs corresponding to the same
image points. Other pruning criteria utilize the fact that the first three components of T and
J define vectors which are perpendicular and equal in length. When an object is tracked,
the nonlinear terms of the equations can be evaluated from the pose results obtained for the
previous image frame, and the dimensions of the initial search space can be reduced because
the position and extent of this search space can be deduced from predictive techniques and
bounds on admissible motions. This method accommodates the disappearance of features
due to self-occlusion during the object’s motion.



2 Notation

In Fig. 1, we show the classic pinhole camera model, with its center of projection O, its
image plane at distance f (the focal length) from O, its axes Oz and Oy pointing along the
rows and columns of the camera sensor, and its third axis Oz pointing along the optical axis.
The unit vectors for these three axes are called i, j and k. In this paper, the focal length
and the intersection of the optical axis with the image plane (image center C') are assumed
known.

An object with feature points My, My, ..., M;, ..., M, is located in the field of view of
the camera. The object coordinate frame is (Mou, Myv, Myw). The coordinates (U;, V;, W;)
of the points M; in this frame are known. The images of the points M; are called m;, and
the image coordinates (z;,y;) of each m; are known. In the recognition problem, one of the
goals is to be able to say that m; is indeed the image of M;, which is not obvious since the
pose of the object is also unknown. In other words, the correspondences between the image
points and the object points have to be found.

The rotation matrix R and translation vector T of the object in the camera coordinate
system can be grouped into a single 4 x 4 transformation matrix which will be called the
pose matrix P in what follows:
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To obtain the coordinates of an object point M; in the camera coordinate system using this
pose matrix P instead of the more traditional rotation matrix and translation vector, one
simply multiplies P by the coordinates of point M; or vector MgM; in the object coordinate
system. This operation requires that point M; or vector MyM; be given a fourth coordinate
(a fourth dimension) equal to 1 (one). These four coordinates are said to be the homogeneous
coordinates of the point or vector. In the following, vectors and points are four-dimensional
(4D) entities in this homogeneous space, unless otherwise specified.

The first line of the matrix P is a row vector that we call P;. The other row vectors
are called P,, P35 and P4. The coordinates T,,7,,T,,1, the fourth column of the matrix,
are the coordinates of the translation vector T (in Fig. 1, the translation vector T is the
vector OMjg). In the first row vector, Py, the coordinates i,,1,,%, are the coordinates of
a 3D vector, 1, which is also the first row of the rotation matrix R of the transformation.
Notice that vector 1 is also the unit vector for the z-axis of the camera coordinate system
expressed in the object coordinate system (Mou, Mov, Mow). Similarly, in the second row
vector, Py, the coordinates j,, j,, J» are the coordinates of a 3D vector j which is the second
row vector of the rotation matrix; the vector j is also the unit vector for the y-axis of the
camera coordinate system, expressed in the object coordinate system (Mou, Mov, Mow). In
the third row vector, P3, the coordinates k,, k,, k,, are the coordinates of a 3D vector k which

is the cross product of the two vectors i and j. In the following, we show how the vectors

_ I

= 7P, J = TLZPQ can be computed. Once these are obtained, the quantity 7, is found by
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noticing that the first three coordinates of I and J define 3D vectors Ry and R, with norms
equal to f/T.. The completion of the object pose matrix P is then straightforward (see step
3 in Appendix).



3 Fundamental Equations

The fundamental relations which relate the row vectors Py, Py of the pose matrix, the
coordinates of the object vectors MgM; in the object coordinate system, and the coordinates
x; and y; of the perspective images m; of M; are

MM -T = o,
MoM; -J = yzl'v (2)
with 7 s
I——P, J==—P
Tz 1 Tz 2 (3)
X :$2(1+€2)7 Y; _yi(1+52)7 (4)
and

It is useful to introduce the unknown coordinates (X;,VY;, Z;) of vector MM, in the
camera coordinate system for the sole purpose of demonstrating that these equations are
correct. We remember that the dot product MyM; - Py is the operation performed when
multiplying the first row of the transformation matrix P by the coordinates of an object
point in the object frame of reference to obtain the z-coordinate X; of M; in the camera
coordinate system. Thus MgM; - P; = X;. For the same reason, the dot product MM, - P3
is equal to Z;, thus (14¢;) = Z;/T. . Also, in perspective projection, the relation z; = fX;/Z;
holds between image point coordinates and object point coordinates in the camera coordinate
system. Using these expressions in the equations above leads to identities, which proves the
validity of these equations.

Two problems must be addressed before applying these equations:

1. The terms ¢; are generally unknown. These terms depend on P3 (Eq. (5)), which can
be computed only after I and J have been computed (Section 2).

2. These equations can be used only after the correspondences between image points and
object points have been established. Only then can the correct values for the image
coordinate z; be written on the right hand side for a given vector MM, on the left

hand side.

Starting with the first problem of dealing with unknown &;, notice that the coordinates
z; = z;i(1 +¢;) and y; = y;(1 4 ¢;) are the image coordinates of the object points M; by a
model of projection which is a scaled orthographic projection. Indeed x; = fX;/Z; can be
written as z; = %ﬁXi/TZ, and we obtain z! = fX;/T,. In other words, image points (z’, y!)
are obtained by “flattening” the object by orthographic projection of its points onto the
plane z = T, through My before performing a perspective projection. To obtain estimates
for I and J, we first use z; and y; instead of 2} and y! in Eqgs. (2), thereby making errors z;¢;
and y;e; which are added to the estimates of the image errors. Once estimates for I and J
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Figure 2: Left: In the absence of uncertainties, the head of vector I belongs to a plane
orthogonal to the feature vector MoM; at the z-point H,; located at abscissa z!/|MqM;|.
Right: Because of uncertainties in image detection and ¢;, the head of I lies in a 4D slab
perpendicular to MoM;.

have been obtained, these estimates can be used to find more precise values of ¢;, which in
turn lead to better estimates of I and J.

Regarding problem (2), in some computer vision applications the correspondences can
be obtained prior to the pose information. For example, in calibration applications, the
feature points may be the centroids of marks that are easy to differentiate on the target
calibration object. Then Eqgs. (2) can be solved iteratively by first making rough estimates
for ¢; (setting them to zero when no information is available), solving the linear systems for I
and J, finding better estimates for ¢;, and repeating the process. A least square object pose
is generally found in a few iterations. An appendix summarizes the steps of this algorithm,
which was introduced in a more geometrical form in [5]. The rest of this paper addresses the
more difficult situation where the correspondences between image points and object points
cannot be obtained prior to the pose information.

4 Geometric Constraints for the Solutions I and J

The following discussion shows that the solutions I and J are located within small polyhedral
regions which can be identified with respect to the 4D homogeneous coordinate system of
the object.

Equations such as MM, -1 = 2! (Eq. (2)) can be viewed as geometric constraints on
the vector I in space with respect to the feature vectors MgM;: If the foot of vector I
coincides with My, the head of T must project on the feature line MgM; onto a point H;
with abscissa x/|M¢M;|. Equivalently, the head of I must belong to a plane perpendicular
to MoM,; at H,; (Fig. 2). In the following, the points H,; are called x—points. They are
points constructed on the feature lines MgM; using the z-coordinates of the image points.
Similarly, the points H,; considered in constructing the vector J have abscissae y!/|MoM,|
and are called y—points.



Figure 3: The head of I is found at the intersection of the slabs corresponding to the z-
coordinates z! (corrected by 1 + ¢;) of the feature points M;. The vector J is then found
at the intersection of the slabs using the y-coordinates y! for the same correspondence. A
further verification is obtained from the property that I and J (or 3D vectors from the first
three coordinates of I and J in 4D) are perpendicular and have same lengths.

In most situations, the terms 2% = z;(1 + ¢;) are known only approximately. Bounds for
the uncertainties in these terms can be computed by adding the image error e and the error
¢/ made in estimating z;e;. The &; terms are the projections of the vectors MoM; on the
camera optical axis, divided by the distance 7T, from the camera to the point Mj along the
camera optical axis (Eq. (5)). Therefore an upper bound for these terms is R/ D, where R is
the radius of a sphere centered at My containing the object and D is a lower bound for the
distance T,. Clearly, estimating tight upper bounds for these errors is made easier if we have
some idea of the range in which the object is expected to be found. When the object is being
tracked and an approximate pose for the object has been found from a previous image, ¢;
can be estimated from this previous pose, and the uncertainty interval can be reduced and
centered around z;(1 + &;).

Because of these uncertainties, all we can say is that the head of I projects onto the
feature vector within the uncertainty interval around an x-point H,;. Equivalently, the head
of T must belong to a slab perpendicular to MM, at x-point H,; with a thickness defined
by the uncertainty interval (Fig. 2).

For I to be solution of a system of n Eqs. (2) for ¢« = 1,2,3,...,n, the head of vector I
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must belong to the slab 577 defined at x-point H,; on the feature vector MoM;j, the slab
Syo defined at H,y on MgM,, etc. Therefore I must belong to the intersection of these n
slabs. A necessary condition for this to occur is that there exists a region ¥ in space included
in at least n slabs S;; (Fig. 3). This region ¥ is helpful for locating I only if it is a closed
polyhedral region. In the 4D space of homogeneous coordinates, this occurs if the number
of slabs is at least n = 4 and if the feature vectors MqM; are not coplanar.

Similarly, J must belong to the intersection of n slabs T};. A necessary condition for this
to occur is that there exists a region O in space included in at least n slabs T3; (Fig. 3).

Furthermore, the n slabs S;; including the region ¥ and the n slabs T;; including the
region © must be defined by the same feature vectors MoM; and the same image points
m;. Therefore the n slabs T;; at the y-points H,; computed from the same points m; which
produced the slabs S;; must intersect in a non-empty polyhedral region O.

As additional conditions, the solution vectors I and J are constrained in relative am-
plitude and orientation; the first three coordinates of I and J define two 3D vectors R4
and Ry. These vectors are proportional to 1 and j respectively, with the same coefficient
of proportionality f/T,. Therefore Ry and Ry must be orthogonal and have equal lengths.
Therefore a pair of regions ¥ and © can contain the heads of vectors I and J only if (1) the
range of 3D distances from My to the points of ¥ overlaps the range of distances from M, to
the points of ©, and (2) the extrema of the 3D dot products between pairs of vectors with
heads in each region are of opposite signs.



5 Finding solution regions with unknown correspondences

In the problem addressed here, the correspondences between the N feature points and some
of the n’ detected image points are not known. Given an object point M;, we do not know
which image point among my, my, ms, etc, is the image of M;. Furthermore, some points
M; may not have images, and some image points may not correspond to any of the object
points. However, we assume for the moment that the number ng of image points that match
the object points is defined (finding this number is the objective of the next section).

The best we can then do is to consider, for the N feature points M;, all the slabs defined
from the n’ detected image points. On each feature vector MgM; we can construct an x-
point H,;; for each detected image point m;, and consider the corresponding slab. Slabs for
a given feature vector MgM; are parallel. Slabs from two different feature vectors intersect
each other (object feature points M; can be chosen so that lines MyM; are well separated).

The proposed method finds small regions of space ¥ and © including the heads of vectors
I and J. If there are indeed at least ng image points of the object feature points among the
detected image points, and if the bounds for the image and ¢; uncertainties are correct, there
exists a pair of regions (X, ©) such that ¥ is included in at least ng slabs, defined by x-points
H,;; located on feature vectors MM, and corresponding to image points m;, and such that
© is also included in at least ng slabs, defined by y-points Hy;; located on feature vectors
MoM; and corresponding to the same image points m;.

The method is based on eliminating pairs of regions of space which do not satisfy the
geometric constraints defined in the previous section, proceeding from coarse to fine regions
by bisection of space. Considering one region ¥’ and one region ©’, these cannot contain the

heads of I and J if:

1. ¥ or © are not intersected by ng slabs (then no point inside either region can be
included in ng slabs).

2. ¥ and ©' are not intersected by ng slabs constructed from the same image points.

3. The range of 3D distances from My to the points of ¥/ does not overlap the range
of distances from M; to the points of ©'. (Hence the two regions cannot respectively
contain heads of I and J at equal distances from Mj).

4. The extrema of the 3D dot products between pairs of vectors with heads in each region
are of the same sign. (Hence the two regions cannot respectively contain heads of
perpendicular vectors I and J).

There exists a pair of regions (X, ©) which cannot be eliminated by the above criteria,
and we can recognize and label in the image the ny points that contributed to these regions.
We find these regions by recursive bisection of space to find region ¥, and simultaneous
bisection of space to find region ©. We simultaneously explore two binary trees by depth-
first search, pairing branches from both trees and pruning paired branches excluded by the
above criteria.



As a further verification of the matching of the ng points (also providing a more accurate
pose matrix), we proceed as follows: The terms e; can be computed at this point from
the pose matrix, using the expression given with Eq. (2). The terms z} = z,(1 + ¢;) and
yi = yi(1 4+ ;) can then be computed, as well as reduced uncertainty intervals. These
corrected coordinates and intervals define thinner slabs at slightly different locations which
result in smaller regions ¥ and ©, less ambiguity between possible matchings, and a more
accurate pose.

6 Finding the best region

The explanations so far have focused on finding regions ¥ or @ at the intersection of at least
no slabs. We would actually like to find the regions at the intersection of the highest number
of slabs, because this provides the maximal number of matches between image points and
object points. We start the search with ng = n’, the total number of image points detected.
Generally, some image points do not have any matches, and the search quickly fails. We
then decrement ng until a search succeeds.

7 Search for regions ¥ and O

A binary tree search was advocated by Breuel for this type of problem [3]. To search for a
single region, say Y, the approach consists of starting with a large box which is guaranteed
to contain all the regions of interest, and recursively dividing the box into two child boxes.
At depth 1, the plane used for dividing the box is perpendicular to the x-axis of the 4D
space, at depth 2 the plane is perpendicular to the y axis, at depth 3 to the z-axis, and at
depth 4 to the k-axis. At depth 5 we are back to a division perpendicular to the x-axis, and
so on. Eventually, we have divided the space into boxes so small that at least one of them
is contained in the region ¥, at the intersection of ng slabs. The process is illustrated in 2D
in Fig. 4.

7.1 Simultaneously searching for two regions

We start with an initial box Ag large enough to include the head of I and an initial box
By large enough to include the head of J (from Egs. (2) and (3), one can show that the
coordinates of these vectors can be expressed in pixels and are smaller than the largest
image point coordinates). The box Ag is divided into two boxes A; and Ay. The box By
is divided into two boxes B; and B;. Then the pair of boxes A; and B; is considered,
and the elimination criteria of the previous section are applied to the pair. If none of the
elimination criteria applies, the two boxes are themselves divided, and the process is repeated
recursively. If any elimination criterion applies, another pair at the same depth, say A; and
B,, is considered. If all four possible pairs are eliminated, we backtrack to a pair which has
not be considered at the previous depth. If the previous depth is the root depth, the search
has failed. The search succeeds when two boxes of small predefined dimension (a few pixels
if the coordinates of T and J are expressed in pixels) survive the elimination criteria, and
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Figure 4: A search by bisection of space locates a box included in a region at the intersection
of three slabs (white box). Boxes which are not intersected by three slabs are pruned (black
box). Tests for intersections between boxes and slabs are performed using box projections
on the feature vectors.

are included in ng corresponding slabs; this second test is added when the boxes become
small enough to fit in the slabs; the elimination criteria test only for the necessary (but not
sufficient) condition that a box be intersected by ng slabs.

7.2 Tests for intersection of a box with n slabs

If a box does not intersect n slabs, no subdivision of this box will be included in n slabs,
and this branch of the tree can be pruned [3]. This is one of the elimination criteria defined
above. The tests for inclusion and intersection are simpler here than in Breuel’s formulation.
A box intersects n slabs if, for each of n feature vectors MgM;, the 1D projection of the box
on MM, intersects the uncertainty interval around an x-point H,;;.

Instead of checking for intersections of intervals, we augment the interval of the box
projection on each side by the amplitude of the uncertainty interval, and we count the x-
points contained in this interval. The uncertainty intervals and the lengths pg; of projection
of a box at depth d on feature vectors MM, are precomputed (Fig. 5).

The count of intersections between boxes and slabs is incremented by 1 for each feature
vector when we find at least one x-point inside the (augmented) projection interval of the
box. Accordingly, we have to keep track of which x-points are contained in the augmented
projection interval of the box. Having done the same task with the parent box, we know the
list of x-points included in the parent interval. Each child interval shares with the parent
interval one bound. The other bound is inside the parent interval and must be located with
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respect to the x-points (Fig. 5). This is achieved by bisection over the parent list of x-points
(the root list of x-points was sorted). The location of this bound provides the element count
for the new list. The list of x-points for the left child has the same address than the parent
list, whereas the list for the right child has an address offset by the index position of its left
bound in the parent list.

7.3 Tests for inclusion of a box in a region

We verify that a box at depth d is included in ng slabs by verifying that for each of at least ng
feature vectors MoM;, the 1D projection of this box on MgM; is included in the uncertainty
interval around an x-point H,;;.

The depth for which all the lengths py; of projection of a box at depth d on feature vectors
MM, are smaller than the lengths wu; of the uncertainty intervals is also precomputed, and
we start checking for inclusion of the box projections in the uncertainty intervals only when
the tree search has reached this depth. Instead of checking whether this projection is included
in the uncertainty interval around a point H,;;, we check whether there is a point H,;; in
the interval of length (u; — pa;).
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Figure 5: The projection segment of a child box shares one bound with the projection
segment of the parent box. A binary search finds the position of the other bound of this
segment in the sorted parent list of x-points. This position provides the element count and

the address for the child list.
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8 Tracking

In a tracking task, the object has been found in the previous image field, and its pose has
been estimated after finding acceptable vectors I and J (Section 2). We propose to perform
the tracking in the 4D space where the search for I and J takes place. First, the previous
pose allows us to compute estimates for the terms e;, and to take z! = z;(1 + ;) and
yi = yi(1 + &;) to define the positions of the x-points and y-points on the feature vectors.
The error made by using ¢; from a previous frame contributes to the uncertainty intervals
around these points and can be computed from upper bounds df and d7T" on possible rotation
angle and translation increments between two frames. Second, the vector I transformed into
I’ =1+ dI between two frames, and the search for the head of I' can be limited to a box
centered around the head of I and of dimension larger than |dI|, also depending on df and
dT'. Predictive techniques can be applied to predicting I' and the uncertainty on I’ to further
reduce the size of the initial search box for I, and similarly for J'.

9 Summary

We have introduced new equations for expressing the relationship between model points
and image points in a perspective model of projection, which place the nonlinear terms
of the perspective transformation on the right hand side in combination with the image
coordinate terms. The uncertainty on the estimates of these nonlinear terms can be modeled
as additional image uncertainty. We obtain linear constraints on two 4D vectors I and J
proportional to the first and second row of the homogeneous transformation matrix of the
object. These linear constraints represent slabs of space which are perpendicular to feature
vectors (joining the origin of the object coordinate system to the object feature points) at
points depending on the image coordinates of these feature points. Regions of space where
the largest numbers of slabs intersect locate the vectors I and J and correspond to maximal
matchings between object points and image points. Simultaneous binary tree search tasks
are performed for regions containing I and J, and are pruned by mutual constraints resulting
from the fact that I and J belong to slabs corresponding to the same image points. Other
pruning criteria utilize the fact that the first three components of I and J define vectors
which are perpendicular and equal in length. Most of the search consists of 1D search by
segment trees along the feature vectors.

Appendix: Iterative Pose Computation from Point Correspondences

Here we summarize a simple iterative algorithm for finding the pose of an object when
a matching between object feature points and image points is known. It is an analytic
formulation of the POSIT (Pose from Orthography and Scaling with Iterations) algorithm [5]
in homogeneous form, which removes the need to locate the image of the origin My of the
object coordinate system. Note that this pose calculation is presented independently of the
search method described above, which finds the matching and the pose by binary search of
space when the matching is not known.
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The equations to be solved are Eqs. (2). The steps of the iterative pose algorithm can
be summarized as follows:

1. ¢;= best guess, or ¢; = 0 if no pose information is available

2. Start of loop: Solve for I and J in the following systems (see next paragraph)

MM, 1=z, MM, -J =y!

with
zi=wi(l+e), yi=y(l+e)
3. From I, get
R1 = (]1,]2,]3),
f/TZ = |R1|7
P, = (1.//)1

Similar operations yield j and Py from J.
4, k=1x j, P3 = (ku7kvykw7Tz)7 g, = M()MZ Pg/TZ —1
5. If all ¢; are close enough to the ¢; from the previous loop, EXIT, else go to step 2.

6. Py, P2, Ps, along with P, = (0,0,0,1), are the four rows of the pose matrix.

We now provide details on finding I and J for step 2 of the iterative algorithm. For
example, the equations for I are:

MM; I = 2!

The unknowns are the four coordinates (Iy, I3, I3, I4), of I, and we can write one equation
with each of the object points M; for which we know the position m; of the image and its
image coordinate z;. One such equation has the form U;l; + ViI, + W;I5 + I, = z!, where
(Ui, Vi, Wi, 1) are the four coordinates of M;. If we write equations for several object points
M;, we obtain a linear system of equations which can be written in matrix form as AT =V,
where A is a matrix with i-th row vector A; = (U;,V;,W;, 1), and V, is a column vector
with ¢-th coordinate equal to x!.

Similarly the vector J can be found by solving the linear system AJ = V,, where A is
the same matrix, and V, is a column vector with :-th coordinate equal to y;.

Since there are four unknown coordinates in vectors I and J, the matrix A must have
at least rank 4 for the systems to provide solutions. This requirement is satisfied if the
matrix has at least four rows and the object points are noncoplanar; therefore at least four
noncoplanar object points and their corresponding image points are required. The pseudo-
inversion operation is applied to matrix A. The pseudo-inverse of matrix A is called the
object matrix B. Since matrix A is defined in terms of the known coordinates of the object
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points in the object coordinate system, the object matrix B depends only on the relative

geometry of the object points and can be precomputed.

Experiments [5] show that this iterative approach generally provides an accurate pose of

the object in a few iteration steps, as long as the points M; are contained within a camera
field of view of less than 90 degrees.
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