Making the Case for Quality Metrics for
Conceptual Models 1in Systems Engineering

Ronald E. Giachetti
Department of Systems Engineering
Naval Postgraduate School
Monterey, CA USA
Email: regiache @nps.edu

Abstract—The adoption of model based systems engineering
takes models and puts them front and center to support all
systems engineering activities. The majority of the models are
static models describing some aspects concerning the structure
of the system. This paper addresses the question of what makes
a good model. The paper discusses modeling languages and how
quality is defined and measured in software engineering where
much more work has been done. We propose developing metrics
based on the systems engineering activity models to supplement
quality metrics borrowed from software engineering.

I. INTRODUCTION

Systems engineering is largely performed by engineers
interacting with models. Engineers create, analyze, and com-
municate system design ideas and information via models.
Engineers have a long history of using models to support
their work. What is new is the desire to formalize the use
of models in engineering and elevate them as the main means
for the representation, storage, and communication of system
information. We term this Model-Based Systems Engineering
(MBSE).

As models assume a more central and critical role in the
design and development of systems, the community needs
to consider the question of what makes a good model? The
question of what makes a model good has largely been
unasked in the systems engineering community in spite of the
trend toward model-based systems engineering.

Addressing the goodness of models is important because
of several reasons. First, the engineering community has a
diverse set of models available, often to represent the same
phenomenon. It is likely some models are better than others at
representing a particular system aspect. Second, it is likely the
models available to us influence how we think about systems
[1]. Ferguson [2] makes a strong case that engineers think non-
verbally as evidenced by the use of drawings ranging from
sketches to more formal blueprints. These drawings shape
our thinking about systems. No doubt models also shape our
thinking. Lastly, understanding the goodness of models can
help tool developers to improve the tools we use in systems
engineering.

The remainder of the paper addresses the question of what
makes a model good and how can we assess it? The paper first
reviews the literature on model verification, validation, and
quality metrics. We consider the closely related work done in

software engineer and assess whether its applicable to systems
engineering. We propose a quality model to analyze the quality
of systems engineering models. Our work contributes a set
of quality metrics based on the pragmatics of the modeling
language in terms of its support for systems engineering
activities.

II. MODEL BASED SYSTEMS ENGINEERING

Model based systems engineering (MBSE) uses models to
support the entire systems engineering process. The models
are computer interpretable, which means all the model data
is stored in a database and available for reuse in multiple
models or views. Advocates of MBSE purport it provides
many benefits to communication, efficiency, effectiveness, and
traceability.

Engineers face a decision about which modeling language
to use in MBSE. Currently, popular available choices include
SysML, LML, DoDAF as well as others built into tools such
as Vitech Core’s schema. Our focus on the goodness of models
starts with understanding the structure of modeling languages.

III. MODELING LANGUAGE

A modeling language consists of a set of modeling con-
structs capable of representing relevant domain concepts, a de-
scription of the construct’s attributes, and the interrelationships
between them [3]. The modeling language has a grammar, also
called syntax, describing the rules for forming valid combina-
tions of the constructs. A modeler uses the modeling language
to create models as combinations of constructs according to
the language’s rules in order to represent concepts or actual
artifacts. Ideally, a model construct has an isomorphic mapping
to a real-world artifact.

It is possible in languages such as SysML to build a
model that is correct per the rules but suffer from ambiguous
semantics. Many researchers seek highly formal syntax and
semantics in order to avoid such ambiguity because the models
in MBSE need to be computer interpretable and exchangeable
between software tools [4] [5]. Ontologies offer an approach
to formalize a modeling language for systems engineering
because they define the concepts and relationships in a domain
(61 [7].

We design modeling language for a purpose, and the criteria
to evaluate the language must be with respect to its purpose.

Most work on assessing the goodness of models involves
verification and validation of simulation models. In this case
the criteria of what constitutes “good” is clear because we want
to use models to analyze and/or predict the performance of a
system. The concept of model validation is not suited to the
large number of system architecture models forming a part of
MBSE. SysML structure diagrams (block definition diagram,
internal block diagram, and package diagram)and requirement
diagram are examples of models where traditional notions of
validity do not apply. Yet these models are important to MBSE,
and the community should be asking how do we know they
are good?

How engineers use modeling languages may be markedly
different than the goals of formal notation and semantics for
computer interpretation and interoperability. Ralph Johnson
says, from a relativistic perspective, “Architecture is a social
construct” because it depends on what the system developers
think is architecturally significant for inclusion [8]. Others
have expressed similar thoughts and findings. Bucciarelli [9]
argues there is no single universal and shared truth that all
those on a multi-disciplinary design team agree to. It is via
a myriad of means including sketches, verbal, graphs, and
negotiation that designers are able to communicate about the
design. A recent study of how engineers communicate about
system functions found practitioners use multiple definition of
function almost simultaneously [10]. Such studies suggest that
engineers are able to handle ambiguity and it might even be
useful during the system design phase. This argues against too
much formalization in a modeling language because it might
constrain the expressiveness of the engineering.

IV. ENGINEERING MODELS

An engineering model is a representation of a real system.
A wide variety of models are used in systems engineering
making it necessary to offer a classification because the quality
issues are different for each type of model. Broadly we
classify a model as analytical, computational, or conceptual.
Analytical models are math models and may be deterministic
or stochastic. Physics-based models are an important sub-
class of analytical models in which the model is based on
equations describing the underlying physics of the system.
Computational models exploit the power of the computer to do
many calculations and simulate system behavior. Many sub-
classes of computational models exist including discrete event
simulation, agent-based simulation, and continuous simulation
models. Some computational models are used to approximate
physical processes such as finite element analysis, computa-
tional fluid dynamic, and other similar models.

A conceptual model represents concepts and the relation-
ships between concepts in a visual format. Many of the sys-
tem engineering architectural models are conceptual models
including SysML requirements models, functional flow block
diagrams, SysML diagrams, flow charts, and most all DoDAF
models. Conceptual models are useful artifacts in system de-
velopment programs because they facilitate communication of

complex ideas among the many program stakeholders. For ex-
ample, a block diagram showing how the system is partitioned
into subsystems and the interactions between those subsystems
is a valuable tool to communicate design intent. A primary
advantage of conceptual models over natural language is the
visualization is a more efficient way to communicate complex
ideas. Other benefits, and the motivation for MBSE, include a
more formal language that is computer implementable, ability
to connect multiple models in a central repository available to
all team members, and the availability of tools for automating
various types of analysis or verification since the models are
computer readable.

The traditional perspective of model quality is of model
verification and validation. A modeler examines a system of
interest (Sol) and through the modeling activity creates a
conceptual model consisting of the modeler’s assumptions,
intended purpose, model constructs, and their meanings. The
modeler then constructs the model in the computer or graphi-
cally. Verification is the activity of determining whether the
model as constructed accurately represents the conceptual
model. Validation is the activity of determining whether the
constructed model represents the Sol to a degree sufficient for
the model’s purpose. Figure 1 illustrates the process. MBSE is
done in teams, and models are a medium of communication,
which adds the issue of interpretation of a model such that it
does not reflect the modeler’s intent. Figure 1 allows for this
condition by showing the Sol as two different elements: one
observed by the modeler and one as interpreted by the model
user.

Fig. 1. Model Verification and Validation

Modeler’s
Conceptual
Model

System-of
Interest

Verification

Validation
Reader’s

Conception of

Model

Verification and validation of models has been defined in
the context of analytical, physics-based and simulation models
[11] [12]. One of the most accepted validation technique
and the one that gives the greatest confidence is statistical
comparison of the model’s output data with actual data. The

verification and validation approaches are not possible for
descriptive models. Descriptive models are different because
there is no output data to compare with actual data.

Some researchers leverage the accepted verification and val-
idation methods for simulation models by converting SysML
behavioral models into executable models such as Markov
chains or simulation models and then verify and validate
the simulation model [13]. Another approach is checking the
model to find errors oftentimes using formal logic with strong
language syntax and semantics [15] [14]. Such techniques
ensure model verification, but not necessarily validation, al-
though they can determine whether a structure or behavior
sequence is sound. Moreover, these techniques are used for
the SysML behavioral models only, and do not address the
issue with respect to the structural models.

It remains unclear whether verification and validation are
appropriate means to think about the quality of static models
describing system structure or architecture. In these cases,
we should be asking what is the purpose of the model and
how well does the model serve that purpose? To answer the
question we need criteria. The next section discusses how the
software engineering community has addressed the issue.

V. QUALITY METRICS

The software engineering community has given much more
attention to the quality of conceptual or descriptive models.
Models of software serve multiple purposes, but in the end
they must meet formal requirements for being able to con-
vert models to correct and reliable executable code. Table I
shows the criteria from three sources side-by-side. Paige et
al. [16] adopt previously debated principles of programming
languages to modeling languages for software engineering.
They observe that modeling languages are essentially no
different than programming language, they are designed and
consequently there are goals for the language. The goodness
of the language is how well it enables us to develop systems.
They derive principles of what constitutes a good modeling
language and use the principles to evaluate UML. Many
others in software engineering have identified and discussed
quality criteria within that domain. Friedenthal et al. [17] is
one of the few to discuss quality attributes in the context
of modeling in systems engineering. Their analysis is in the
context of SysML, but there is nothing unique about SysML
preventing the criteria’s use for other modeling languages.
In another article, Friedenthal and Burkhart [18] list without
much discussion criteria of a modeling language as being
expressive, precise, communicative, support efficient and in-
tuitive model construction, interoperable, manageable, usable,
and customizable. The software community coalesced on the
international standard ISO/IEC 9126, which defines six quality
attributes and a process model to evaluate software using the
quality attributes.

Lindland et al. [19] observe there are many lists of quality
attributes often well argued for, but lacking an overall frame-
work. The authors present a framework based on semiotics
to classify the quality aspects into syntactic (adherence to the

TABLE I
QUALITY CRITERIA

[Paige | Friedenthal [ISO/IEC 9126 |
Simplicity Purpose well-defined? Functionality
Uniqueness sufficient scope Reliability
Consistency model fidelity Usability
Seamlessness completeness relative to | Efficiency

scope
Reversibility well-formed Maintainability
Scalability internal consistency of the | Portability
model
Supportability understandability of the
model

accurate or valid model of
domain of interest

Reliability

Space economy

language rules or syntax), semantic (the meaning and relevance
of the concepts within a problem domain) and pragmatic
(understandability of a model by stakeholders). Of interest
herein is the semantic and pragmatic goals. The semantic goals
is whether the modeling language can represent concepts in
the domain and the completeness of the representation. The
semantic goal is how ontologies are evaluated, to what degree
do they represents concepts in a domain? In our view, syntax
and semantics correspond to traditional notions of verification
and validation. Pragmatics is the new dimension because it
involves the human users of the model in definition of quality.

Pragmatic quality is the degree to which users understand
the models. Suitable means to measure pragmatic quality
would be experiments with human subjects or analysis of
model constructs support for the engineering activities.

The quality criteria can be highly subjective and open to
interpretation. For example, Vaneman [20] finds SysML to be
arduous to use and therefore falling short of being usable. No
doubt, there are many others who would find SysML to be
highly usable. A second caution about using quality metrics
is it assumes a generic purpose for all modeling languages.
What is missing is the evaluation of the language with respect
to its stated purpose. Lastly, any evaluation will be difficult
because system modeling languages have many purposes as
well as many unattributed uses beyond their design intent.

VI. DIFFERENCES BETWEEN SOFTWARE AND SYSTEMS
ENGINEERING

Before adopting quality metrics from software engineering
to systems engineering, we will examine how the two disci-
plines are different. The artifact of software engineering is a
conceptual object, i.e., software, without any physical mani-
festation. In software engineering it is possible to have code
generators that automate the step of converting a conceptual
model into code. For example, a UML class model shows the
software’s classes, attributes, and how the classes are related.
The implementation of the model in a programming language
such as Java will have classes, attributes, and relationships
corresponding to the model. In fact, the isomorphism is
an important property of the mapping. The programming
language is equivalent to a modeling language except at a

different level of abstraction. Two implications of the relation-
ship between conceptual model and computer programming
code is first we can partially automate code generation with
benefits of efficiency and better quality. Second, the fact that
model and program are both conceptual objects helps explain
why software engineers thought of adopting principles for
programming language design to modeling language design.

Systems engineering is different because our conceptual
models represent physical artifacts. Systems engineering con-
ceptual models do not in general have any isomorphism
with the real objects. In fact, a gap remaining in MBSE
is bridging the divide between the conceptual and mostly
descriptive models of system architecting and the physics-
based and computational models for analyzing system designs.
Tool providers such as Rational System Architect have devel-
oped code generators to turn conceptual activity models into
executable simulation models. The linking of the conceptual
models to physics-based and other analyitcal models is largely
incomplete [21]. As a result we do not have the same con-
nection from model to artifact that software engineering does.
Part of model quality should assess whether our design models
lead to functioning systems. After all, a challenge for design
is how do designers know whether an artifact conforming to
the specifications they design will perform as intended? [22]

One of the major system modeling language efforts has
been SysML, which borrows heavily from UML. A result
of borrowing heavily from UML is adopting the underlying
concepts and implied methods that guided the development of
UML

A. Modeling Language Goals

113

SysML is designed to provide a “... simple but powerful
constructs for modeling a wide range of systems engineering
problems. It is particularly effective in specifying require-
ments, structure, behavior, allocations, and constraints on sys-
tem properties to support engineering analysis.” [23]. SysML
was derived by committee from UML 2.0 with one of its goals
to reuse UML as much as possible.

The Lifecycle Modeling Language (LML) states the follow-
ing goals [24]

1) to be easy to understand by engineers and other stake-
holders

2) to be easy to extend

3) to support both functional and object-oriented ap-
proaches

4) to support activities in the entire system life-cycle

5) to support both evolutionary and revolutionary system
changes to system plans and designs over the lifespan
of the system.

In neither case do the language developers state any quality
attributes of how well the language serves the goals. Also,
in both cases the statement of purpose is very broad in both
cases. UML discusses the early development phase activities
and LML says all activities in the life-cycle.

VII. QUALITY EVALUATION VIA PROCESS MODEL

The primary consideration for the quality of a model should
be how well does the model support the systems engineering
activities. Each activity has certain information needs, and
the quality of the modeling language is whether it satisfies
those information needs. The measurement process should
identify for each activity the required information entities
and attributes. Additionally, the modeling language should
support integration among all the activities primarily through
traceability.

Figure 2 shows a systems engineering activity and the
inputs and outputs according to INCOSE’s definition of the
stakeholder requirements activity. The measure of quality
for the modeling language is how well does it support the
activity? The quality measures need to qualify how well the
model supports the output by further elaborating what are the
attributes of the outputs, and whether they are represented in
the models.

Fig. 2. Stakeholder Requirements Activity

Stakeholder Needs Stakeholder |—— system functions
i Stakeholder
Source Documents ——» ReqUI_re'n']ents [requirements
Definition
Problem or —> MOE
Opportunity Statement Al

I

Requirements Models
Engineer

In the case shown, one of the main outputs is stakeholder
requirements. A requirement is a declarative statement of what
the system needs to do using particular phraseology such as
“the system shall ...” In a US Department of Defense program,
we need to specify threshold and objective values for the
requirement. Looking at the set of requirements, we need to be
able to represent the relationships between the requirements.
The life-cycle view tells us we want to support traceability of
the requirement to its source and later to how it is implemented
by the system. We also need to know how the requirement is
validated and verified. In summary, the process perspective
of evaluating the quality of the modeling language examines
how well the modeling language supports the process and its
activities.

The other quality metrics from the software domain let us
evaluate how good is the modeling language in terms of its
usability, scalability, portability, and the other quality aspects.
These are qualities deemed important for any modeling lan-
guage.

An important quality metric, especially for engineering of
systems of systems is the interoperability of the models. Model
interoperability has long been a challenge in engineering
and is a well studied problem. Much of the work is in
the simulation domain, but the concepts are applicable to
all types of engineering models. The challenge is greater
than the exchange of data, it also requires understanding the

epistemology underlying the models. One such approach is the
levels of interoperability model [25].

VIII. PROPOSED QUALITY FRAMEWORK

We propose a quality framework that adapts the quality
metrics from software engineering, but also adds quality
metrics from a pragmatic process perspective. Adopting the
quality metrics from software engineering is reasonable be-
cause modeling in both disciplines involves conceptual models
and we share many of the same goals of understandability, etc.
For example, Bonnema argues communication is one of the
most important purposes of architecture models [26]. However,
for systems engineering models to be useful and to derive
the benefits of MBSE, our models must support the systems
engineering process. For this reason, an important quality
metric is how well a set of models supports each systems
engineering activity. One approach is to take the activities
as defined by INCOSE and check against them. However,
this also suggests an approach whereby the MBSE method
is defined with activities that take advantage of particular
model characteristics while mitigating where models fall short.
Certainly, further research is warranted to explore these issues
surrounding model quality.

IX. CONCLUSION

This paper discussed the issues surrounding determination
of what makes a good model. The article found there is little
discussion within the systems engineering community of what
makes a good model. Measurement is one of the first steps
towards better understanding a phenomenon, and the mea-
surement of quality of models in systems engineering would
help the field. In the related field of software engineering
there is a lot of work and even a standard for measuring the
quality of a model. This article proposes to adopt many of
the quality attributes from software engineering but to also
use the systems engineering process model to identify the
information requirements for performing model-based systems
engineering.

REFERENCES

[1] Giachetti, Ronald E. Evaluation of the DoDAF Meta-model’s Support of
Systems Engineering. Procedia Computer Science 61 (2015): 254-260.

[2] Ferguson, Eugene S. Engineering and the Mind’s Eye. MIT press, 1994.

[3] Guizzardi, Giancarlo. On ontology, ontologies, conceptualizations, mod-
eling languages, and (meta) models. Frontiers in artificial intelligence
and applications 155 (2007): 18.

[4] Nutting, Joseph W. Examination of modeling languages to allow quan-
titative analysis for model-based systems engineering. Diss. Monterey,
California. Naval Postgraduate School, 2014.

[5]1 Reichwein, Axel, and Christiaan JJ Paredis. Overview of architecture
frameworks and modeling languages for model-based systems engi-
neering. ASME 2011 International Design Engineering Technical Con-
ferences and Computers and Information in Engineering Conference.
American Society of Mechanical Engineers, 2011.

[6] van Ruijven, L. C. Ontology for systems engineering as a base for
MBSE. INCOSE International Symposium. Vol. 25. No. 1. 2015.

[7] Jenkins, Steven, and Nicolas Rouquette. Semantically-rigorous systems
engineering using SysML and OWL. (2012).

[8] Fowler, M., Who needs an architect? /IEEE Software, (2003) 2-4.

[9] Bucciarelli, Louis L. Between thought and object in engineering design.
Design studies 23.3 (2002): 219-231.

[10]

(1]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]
[24]
[25]

[26]

Eisenbart, B., Gericke, K., and Blessing, L. T. (2016). Taking a look
at the utilisation of function models in interdisciplinary design: insights
from ten engineering companies. Research in Engineering Design, 1-33.
Kleijnen, Jack PC. Verification and validation of simulation models.
European journal of operational research 82.1 (1995): 145-162.
Sargent, Robert G. Verification and validation of simulation models.
Proceedings of the 37th conference on Winter simulation, 2005.
Debbabi, Mourad, et al. Verification and validation in systems engi-
neering: assessing UML/SysML design models. Springer Science and
Business Media, 2010.

Giammarco, K., Auguston, M., Well, you didn’t say not to! A formal
systems engineering approach to teaching an unruly architecture good
behavior, Complex Adaptive Systems Conference, November 13 - 15,
2013, Baltimore, MD

Rodano, Matthew, and Kristin Giammarco. A formal method for evalu-
ation of a modeled system architecture. Procedia Computer Science 20
(2013): 210-215.

Paige, Richard F., Jonathan S. Ostroff, and Phillip J. Brooke. Principles
for modeling language design. Information and Software Technology
42.10 (2000): 665-675.

Friedenthal, Sanford, Alan Moore, and Rick Steiner. A practical guide
to SysML: the systems modeling language. Morgan Kaufmann, 2014.
Friedenthal, Sanford, and Roger Burkhart. Evolving SysML and the
System Modeling Environment to Support MBSE. Insight 18.2 (2015):
39-41.

Lindland. O,I., Sindre, G., Slvberg, A.: Understanding Quality in Con-
ceptual Modeling, IEEE Software 11(2), pp. 42-49 (1994)

Vaneman, Warren K. Enhancing model-based systems engineering with
the Lifecycle Modeling Language. Systems Conference (SysCon), 2016
Annual IEEE. IEEE, 2016.

Beery, Paul T. A model-based systems engineering methodology for
employing architecture in system analysis: developing simulation models
using systems modeling language products to link architecture and
analysis. Diss. Monterey, California: Naval Postgraduate School, 2016.
Galle, Per. Foundational and instrumental design theory. Design Issues
27.4 (2011): 81-94.

OMG Systems Modeling Language, version 1.4.

Lifecycle modeling language (LML) specification, December 1, 2015.
Wang, Wenguang, Andreas Tolk, and Weiping Wang. The levels of con-
ceptual interoperability model: applying systems engineering principles
to modeling and simulation. Proceedings of the 2009 Spring Simulation
Multiconference. Society for Computer Simulation International, 2009.
G. Maarten Bonnema, Communication in Multidisciplinary Systems
Architecting, Procedia CIRP, Volume 21, 2014, Pages 27-33.

		2017-07-27T15:53:43-0400
	Certified PDF 2 Signature

