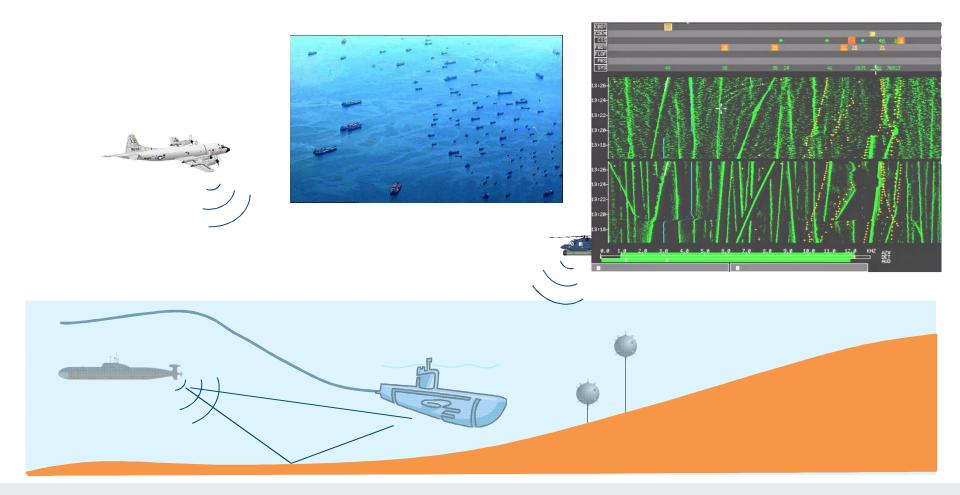


The Littoral Challenge – A SONAR Perspective Dr. Kevin Brinkmann, ATLAS ELEKTRONIK GmbH Littoral OpTech West, September 23rd and 24th

ATLAS ELEKTRONIK at a glance



- The Littoral Challenge
- Expanded Flank Array
- New Signal Processing Methods
- Advanced Data Management (SOTRAM)
- Forward Looking Active Sonar (FLAS)
- AUVs for Remote Sensing
- Conclusion

The littorals are a "bad" combination of environmental conditions and operational demands

The Littoral Challenge

What are we talking about?

- shallow water depth
- · difficult acoustical conditions
- high density of sonar contacts
- military platforms particularly silent
- danger of collisions with obstacles and sea floor impacts

What is required?

- improved sonar detection performance
- improved target separation
- high level of automation for target tracking
- sophisticated navigation sonar for shallow waters

- The Littoral Challenge
- Expanded Flank Array
- New Array Processing Methods
- Sonar Track Manager (SOTRAM)
- Forward Looking Active Sonar (FLAS)
- AUVs for Remote Sensing
- Conclusion

Expanded Flank Array

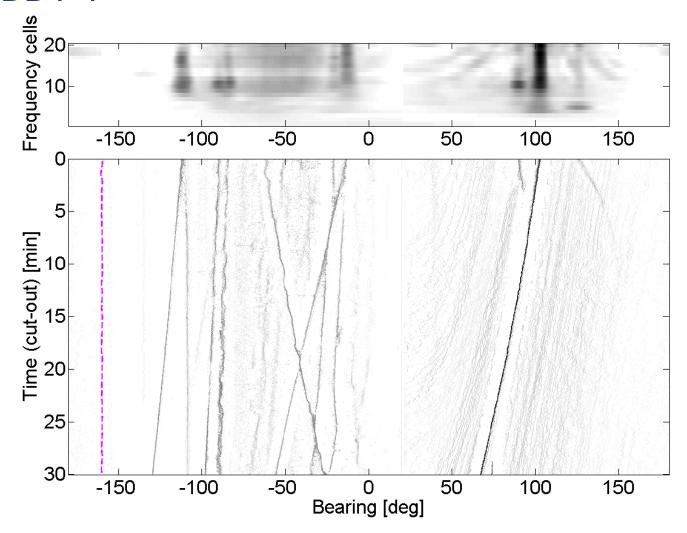
Features of the Expanded Flank Array Sonar (EFAS)

- Extension of the Frequency Range up to 4800 Hz
- Improved Directivity Index due to higher frequency
- Improved Target Separation Performance due to higher frequency
- Vertical extension of the dimension of the array
- Suppression of own noise by use of damping and shielding materials
- Provision of sufficient distance to the pressure hull
- Improved decoupling of the hydrophones
- Digitisation of the signals in the array
- Digital data transmission to achieve immunity against ship borne electrical interferences
- Easy integration on-board of the submarine

- The Littoral Challenge
- Expanded Flank Array
- New Array Processing Methods
- Sonar Track Manager (SOTRAM)
- Forward Looking Active Sonar (FLAS)
- AUVs for Remote Sensing
- Conclusion

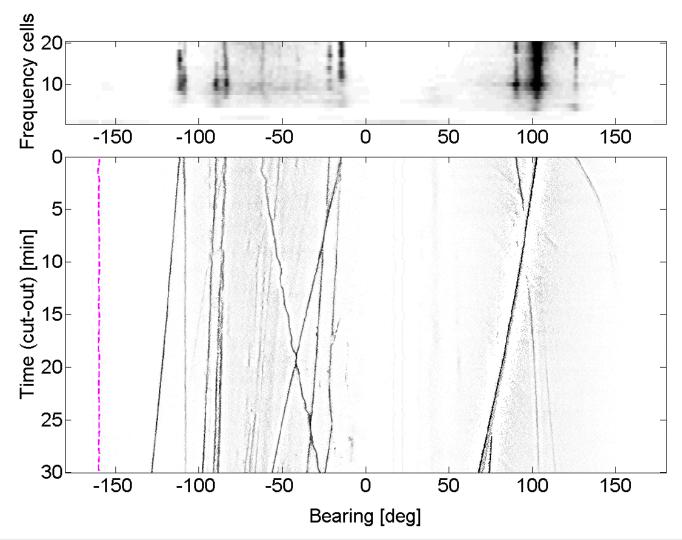
Adaptive Beamforming for Passive Sonar Improving Passive Sonar Detection Performance

Adaptive Beamforming Algorithms


- Estimation of beamformer parameters in real time from the stave data of the array ('adaptive')
- Computationally demanding compared to Delay-Sum beamformer

Features of Adaptive Beamforming

- High target separation capabilities due to very low side lobe levels
- Capability to detect very weak targets
- Cylindrical Array
- Expanded Flank Array, Flank Array
- Towed Array

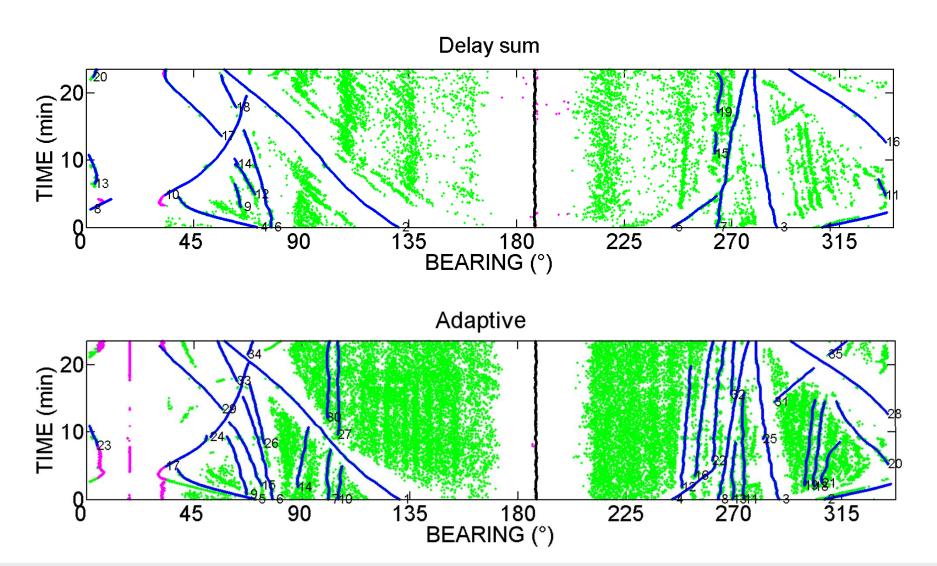


Comparsion DSBF – ABF: Sea Data FAS DSBF BDT 1

Comparsion DSBF – ABF: Sea Data FAS 2 ABF BDT 1

Automatic Tracking and Track Data Fusion

Automatically Initiated Tracks (AIT)


- Aim: track all detected sonar contacts
- State-of-the-art Multi-Hypothesis Tracking algorithms
- Automatically initiated

Sonar Track Manager (SOTRAM)

- Automatic track data correlation and fusion of all Passive Sonar sensors
- Exploit all redundant / complementary track information (target crossings, bad sector)
- Aim: ONE TARGET = ONE TRACK
- Display and Operation of the fused tracks are performed in a new detection display: Target Evaluation Display
- Man-in-the-loop concept retains the operator's autonomy

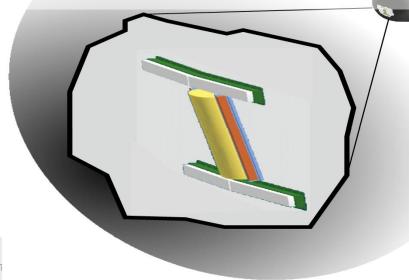
AIT: Multi-Hypothesis Tracking on Sea Data

Sonar Track Manager (SOTRAM) Human Machine Track Data Fusion and **Sonar Sensors** racker Interface Multi Hypothethis Tracking Broadband (MHT) for each acoustic sensor Detection Automatic Cylindrical Narrowband Target Detection Array Tracking Automatic Intercept Target Detection Tracking Track Management Automatic **Target** Broadband Target **Evaluation** Detection Tracking Expanded Automatic Narrowband Flank Target Detection Tracking Array TEV displays for representing Data **Association** Automatic Intercept consolidated information Target and Fusion Detection Tracking Automatic Broadband Target Detection Tracking Automatic Aft Sector Narrowband Target Array Detection Tracking Automatic **Target Motion** Intercept Target **Analysis** Detection Tracking Automatic Automatic fusion of acoustic/non-acoustic Intercept Intercept Target Arrays Detection Tracking track data by ITB

Automatic Tracking and Track Data Fusion

ISUS Next Generation Testbed

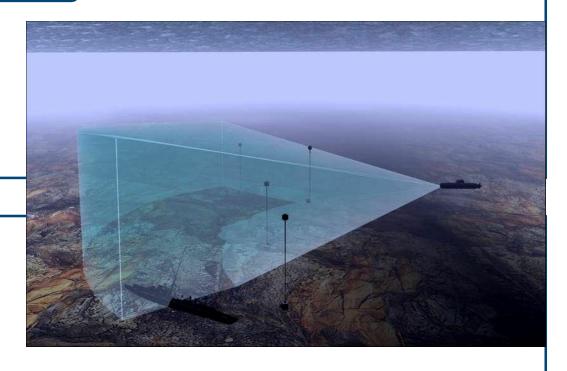
We invite you to come to Bremen to see our SOTRAM Demonstrator implementation at our ISUS Next Generation Testbed.


- The Littoral Challenge
- Expanded Flank Array
- New Array Processing Methods
- Sonar Track Manager (SOTRAM)
- Forward Looking Active Sonar (FLAS)
- AUVs for Remote Sensing
- Conclusion

Forward Looking Active Sonar (FLAS)

Transmission Concept

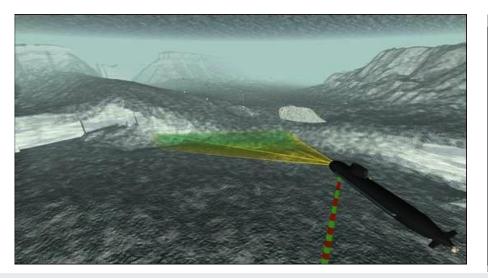
- Application of single frequency / high bandwidth concept
- Centre frequency of 50 kHz represents optimum balance between
 - Detection ranges against small targets (mines)
 - Detection ranges against large targets (submarines)
- Forward looking performance
- Low probability of intercept

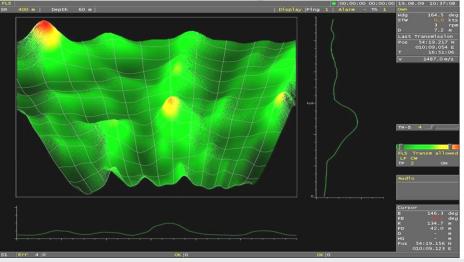

FLAS: Mine Avoidance Sonar (MAS) Mode

Applicable for detection of

- floating mines
- moored mines
- obstacles
- small submarines

Additional Features


- Depth classification
- Automatic tracking
- Automatic alarm
- Automatic collision avoidance course proposals
- Horizontal detection sector: 120°
- Vertical detection sector: 60°

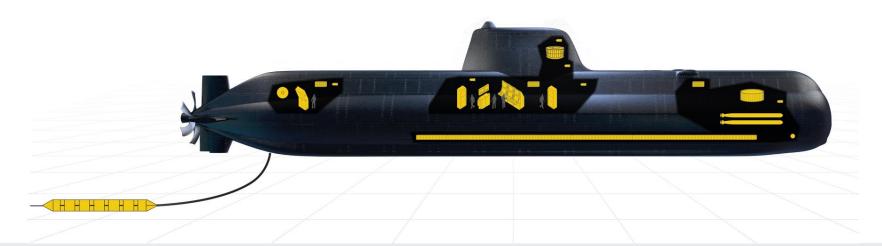


FLAS: Forward Looking Sonar (FLS) Mode

Features

- generates visual representation of sea bottom profile in forward direction
- applicable as a navigation aid
- Horizontal detection sector: 120°
- Vertical detection sector: 60°

- The Littoral Challenge
- Expanded Flank Array
- New Array Processing Methods
- Sonar Track Manager (SOTRAM)
- Forward Looking Active Sonar (FLAS)
- AUVs for Remote Sensing
- Conclusion


Operation of AUVs from Submarines

Conclusion

The ISUS solution

- Improved Sonar sensor performance for complex littoral waters
- Concise real-time Tactical Picture for effective command decisions
- Full sensor to shooter capability
- Minimum operator workload and maximum performance
- Individually customized open architecture systems

Contact

ATLAS ELEKTRONIK GmbH Sebaldsbruecker Heerstrasse 235 28309 Bremen | Germany

Phone: +49 421 457-02

Telefax: +49 421 457-3699

www.atlas-elektronik.com

