Unmanned Underwater Vehicles: Enhancing and Extending our Operational Influence

LCDR Jake Jones
Electrical Engineering
Center for Autonomous Vehicle Research (CAVR)
Why do I need a UUV?

– **Dangerous Environments:**
 - Active sonar
 - Mines
 - Live fire exercises
 - Under Ice Operations
 - Extended shallow water operations
 - Deep water operations

– **Additional sensor capabilities:**
 - Video / Audio / Sonar
 - Remote communications

– **Diver Assistance:**
 - Communications
 - Site Mapping
 - Perspective
 - Inspection
 - Tool delivery / collection

UUVs overcome challenges that are too costly or dangerous for personnel.
Why do I need a UUV?

- **Dangerous Environments:**
 - Active sonar
 - Mines
 - Live fire exercises
 - Under Ice Operations
 - **Extended shallow water operations**
 - Deep water operations

- **Additional sensor capabilities:**
 - **Video / Audio / Sonar**
 - Remote communications

- **Diver Assistance:**
 - Communications
 - Site Mapping
 - Perspective
 - Inspection
 - **Tool delivery / collection**

UUVs overcome challenges that are too costly or dangerous for personnel.
Unmanned underwater systems

- ROVs (Remotely Operated Vehicles)
 - Tethered
 - Agile
 - Expert Operators
 - Mission Adaptation
 - High Bandwidth communications

- AUVs (Autonomous or Semi-autonomous Vehicles)
 - Tethered / Untethered
 - Intelligence to execute missions with limited or no human oversight
 - Accurate repeatable localization
 - Precision control, dynamic stabilization

ROV’s and AUV’s have different advantages and mission sets
ACQUAS is an inexpensive flexible development platform

- **Agile Close-Quarters Underwater Autonomous System**
 - Development platform: safety and flexibility
 - Small, agile: close-quarters, joint human ops

- **SeaBotix vLBV300 miniROV**
 - 300 m rated
 - 250 m fiber-optic tether
 - 3+ kts max speed
 - 4 DOF (incl. lateral due to vectoring)
 - Standard payload
 - Pivoting Camera + LEDs
 - Extended payload configuration
 - Teledyne RDI Explorer DVL/ADCP
 - BlueView Imaging/profiling SONAR
 - Greensea Systems Inc. FOG-based INS with GPS
 - Joystick control
 - Computer control via API
 - Adopted by Navy communities (e.g., EOD)
• Supports various levels of autonomy
 – Remote operation (local and via network)
 – Tele-operation (force-commanded)
 – Semi-autonomous control (velocity-commanded)
 – Semi-autonomous control (position-commanded)
 – Autonomous control: waypoint following
Complex Underwater Environments: NEEMO

- NASA Extreme Environment Mission Operations (NEEMO) – NASA JSC
 - Bill Todd, Marc Reagan
 - Astronaut training: Extra-vehicular activities in simulated gravity
 - Technology evaluation

- Aquarius Underwater Habitat (FIU)
 - Unique facility, Key Largo, FL
 - Saturation diving (7-31 day missions)
 - 45’ depth

- NPS CAVR - NASA JSC collaboration
 - Close-quarters operations
 - Joint human-robot operations
 - Multi-vehicle operations
 - Multi-resolution information gathering

NPS collaborates with NASA/FIU annually to improve/test UUV capabilities
ACQUAS at NEEMO 20

• Precursor: Low-resolution data, wide area
 – 100km of track line, 1.5km², 1m resolution
 – Select 1-2 medium-sized (0.04km²) areas for detailed survey

• Day 1: Medium resolution data, medium area
 – REMUS survey, 10-20km, 0.1m-0.25m resolution
 – Select 5-6 sites of interest (100m²)

• Day 2: High-resolution data, small area
 – ACQUAS operations, habitat controlled (on location)
 – Select 3 sites for human exploration - video stream

• Day 3: Joint ACQUAS-Aquanaut operations
 – ACQUAS leads divers to sites

NPS' ACQUAS demonstrated vital importance of UUV support at NEEMO 20
ACQUAS: Crew monitoring, site inspection

NEEMO 20 - July, 2015
Key Largo, FL

Noel Du Toit, Ph.D., in collaboration with NASA JSC
Center for Autonomous Vehicle Research (CAVR)
Mechanical and Aerospace Engineering
ACQUAS: Receive tool

NEEMO 20 - July, 2015
Key Largo, FL

Noel Du Toit, Ph.D., in collaboration with NASA JSC
Center for Autonomous Vehicle Research (CAVR)
Mechanical and Aerospace Engineering
Possible Operations

• What could we do?
 – Maintenance, construction
 – Diver support
 – Increased operational range:
 • Project sensors/communications
 – ISR, mapping, monitoring, inspection
 – Documentation (Video/Audio/Sonar)
 – Object delivery & recovery (tools/samples)
 – Environmental Interaction
 – ...

Other missions would be more safe / cost effective with UUV support
My focus

– Close Quarters Navigation:
 • Docking
 • Diver Interaction
 • Environment Interaction

– Challenges:
 • Ranging - difficult to assess underwater
 – depth perception
 – fish eye (objects appear larger underwater)
 – turbidity
 – covert?
 • Inertial Navigator Precision

– Possible Solutions:
 • SONAR
 • structured light imaging (KINECT)
 • laser ranging/scanning
 • stereovision (3D video feed)
Docking

NAVAL
POSTGRADUATE
SCHOOL

ACQUAS: Docking

NEEMO 20 - July, 2015
Key Largo, FL

Noel Du Toit, Ph.D., in collaboration with NASA JSC Center for Autonomous Vehicle Research (CAVR)
Mechanical and Aerospace Engineering
ACQUAS: 3D mapping

NEEMO 20 - July, 2015
Key Largo, FL

Noel Du Toit, Ph.D., in collaboration with NASA JSC
Center for Autonomous Vehicle Research (CAVR)
Mechanical and Aerospace Engineering
Questions?

LCDR Jake Jones
jajones1@nps.edu
(360) 633-5631