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Computation and Statistics

« A Grand Challenge of our era: tradeoffs between
statistical inference and computation
— most data analysis problems have a time budget
— and often they’re embedded in a control problem

* Optimization has provided the computational model for
this effort (computer science, not so much)
— it's provided the algorithms and the insight

* On the other hand, modern large-scale statistics has
posed new challenges for optimization

— millions of variables, millions of terms, sampling issues,
nonconvexity, need for confidence intervals, parallel/distributed
platforms, etc



Perspectives on Al

* The classical “human-imitative” perspective
— cf. Al in the movies, interactive home robotics

* The “intelligence augmentation” (IA) perspective

— cf. search engines, recommendation systems, natural language
translation

— the system need not be intelligent itself, but it reveals patterns
that humans can make use of
« The “intelligent infrastructure” (ll) perspective
— cf. transportation, intelligent dwellings, urban planning

— large-scale, distributed collections of data flows and loosely-
coupled decisions



Near-Term Challenges in |

Error control for multiple decisions
Systems that create markets

Designing systems that can provide meaningful, calibrated notions of their
uncertainty

Managing cloud-edge interactions

Designing systems that can find abstractions quickly
Provenance in systems that learn and predict
Designing systems that can explain their decisions
Finding causes and performing causal reasoning

Systems that pursue long-term goals, and actively collect data in service of
those goals

Achieving real-time performance goals

Achieving fairness and diversity

Robustness in the face of unexpected situations
Robustness in the face of adversaries

Sharing data among individuals and organizations
Protecting privacy and data ownership



Computation and Statistics (cont)

 Modern large-scale statistics has posed new challenges
for optimization
— millions of variables, millions of terms, sampling issues,
nonconvexity, need for confidence intervals, parallel/distributed
platforms, etc
« Current algorithmic focus: what can we do with the
following ingredients?
— gradients
— stochastics
— acceleration

« Current theoretical focus: placing lower bounds from
statistics and optimization in contact with each other



Outline

Escaping saddle points efficiently

Variational, Hamiltonian and symplectic perspectives on
Nesterov acceleration

Acceleration and saddle points
Acceleration and Langevin diffusions
Optimization and empirical processes



Part |: How to Escape Saddle Points
Efficiently

with Chi Jin, Praneeth Netrapalli, Rong Ge,
and Sham Kakade




Nonconvex Optimization and Statisitics

Many interesting statistical models yield nonconvex
optimization problems (cf neural networks)

Bad local minima used to be thought of as the main
problem in fitting such models

But in many convex problems there either are no
local optima (provably), or stochastic gradient
seems to have no trouble (eventually) finding global
optima

But saddle points abound in these architectures,
and they cause the learning curve to flatten out,
perhaps (nearly) indefinitely



The Importance of Saddle Points

Strict saddle point Non-strict saddle point

 How to escape?
— need to have a negative eigenvalue that's strictly negative

* How to escape efficiently?
— in high dimensions how do we find the direction of escape?
— should we expect exponential complexity in dimension?



A Few Facts

Gradient descent will asymptotically avoid saddle
points (Lee, Simchowitz, Jordan & Recht, 2017)

Gradient descent can take exponential time to
escape saddle points (Du, Jin, Lee, Jordan, & Singh,
2017)

Stochastic gradient descent can escape saddle
points in polynomial time (Ge, Huang, Jin & Yuan,
2015)

— but that'’s still not an explanation for its practical success
Can we prove a stronger theorem?



Optimization

Consider problem:

in f
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Gradient Descent (GD):

Xer1 = X — NV F(X¢).



Optimization

Consider problem:
min f(x)
x€R?
Gradient Descent (GD):
Xer1 = X — NV F(X¢).

Convex: converges to global minimum;  dimension-free iterations.




Nonconvex Optimization

Non-convex: converges to Stationary Point (SP) Vf(x) = 0.

SP : local min / local max / saddle points

Many applications: no spurious local min (see full list later).



Some Well-Behaved Nonconvex Problems

« PCA, CCA, Matrix Factorization

* Orthogonal Tensor Decomposition (Ge, Huang, Jin,
Yang, 2015)

« Complete Dictionary Learning (Sun et al, 2015)
 Phase Retrieval (Sun et al, 2015)

« Matrix Sensing (Bhojanapalli et al, 2016; Park et al,
2016)

« Symmetric Matrix Completion (Ge et al, 2016)

« Matrix Sensing/Completion, Robust PCA (Ge, Jin,
Zheng, 2017)

* The problems have no spurious local minima and all
saddle points are strict



Convergence to FOSP

Function f(-) is ~-smooth (or gradient Lipschitz)
VXl,XQ, ||Vf(X1) - Vf(XQ)H S EHXI - X2H.
Point x is an e-first-order stationary point (e-FOSP) if

IVFX)I < e



Convergence to FOSP

Function f(-) is ~-smooth (or gradient Lipschitz)
VXl,X27 ||Vf(X1) - Vf(XQ)H S EHXI - X2H.
Point x is an e-first-order stationary point (e-FOSP) if

IVFX)I < e

Theorem [GD Converges to FOSP (Nesterov, 1998)]
For ¢-smooth function, GD with n = 1/¢ finds e-FOSP in iterations:

20(F(x0) — F*)

€2

*Number of iterations is dimension free.



Definitions and Algorithm

Function f(-) is p-Hessian Lipschitz if
Vx1,xe, [|V2F(x1) = V2F(x2)]| < pllx1 — xe|.
Point x is an e-second-order stationary point (e-SOSP) if

VAl <& and  Amn(V2F(x)) > —/pe



Definitions and Algorithm

Function f(-) is p-Hessian Lipschitz if
Vx1,xe, [|V2F(x1) = V2F(x2)]| < pllx1 — xe|.
Point x is an e-second-order stationary point (e-SOSP) if

VAl <& and  Amn(V2F(x)) > —/pe

Algorithm Perturbed Gradient Descent (PGD)
1. fort =0,1,... do

2. if perturbation condition holds then
3. Xt Xt + &, & uniformly ~ Bo(r)
4. Xep1 — Xe — VIF(x)

Adds perturbation when [|[Vf(x;)|| < € no more than once per T steps.



Main Result

Theorem [PGD Converges to SOSP]

For ¢-smooth and p-Hessian Lipschitz function f, PGD with n = O(1/¢)
and proper choice of r, T w.h.p. finds e-SOSP in iterations:

) (f(f(Xo) - f*))

€2

*Dimension dependence in iteration is log*(d) (almost dimension free).



Main Result

Theorem [PGD Converges to SOSP]

For ¢-smooth and p-Hessian Lipschitz function f, PGD with n = O(1/¢)
and proper choice of r, T w.h.p. finds e-SOSP in iterations:

) <f(f(><o) - f*)>

€2

*Dimension dependence in iteration is log*(d) (almost dimension free).

| GD(Nesterov 1998) PGD(This Work)
Assumptions {-grad-Lip {-grad-Lip + p-Hessian-Lip
Guarantees e-FOSP e-SOSP

Iterations 20(f(xo) — *)/€? O(L(f(xo) — £*)/€?)




Geometry and Dynamics around Saddle Points

Challenge: non-constant Hessian + large step size n = O(1/¢).

Around saddle point, stuck region forms a non-flat “pancake” shape.




Geometry and Dynamics around Saddle Points

Challenge: non-constant Hessian + large step size n = O(1/¢).

Around saddle point, stuck region forms a non-flat “pancake” shape.

Key Observation: although we don't know its shape, we know it's thin!
(Based on an analysis of two nearly coupled sequences)



Next Questions

* Does acceleration help in escaping saddle points?

 What other kind of stochastic models can we use to
escape saddle points?

« How do acceleration and stochastics interact?



Next Questions

Does acceleration help in escaping saddle points?

What other kind of stochastic models can we use to
escape saddle points?

How do acceleration and stochastics interact?

To address these questions we need to understand
develop a deeper understanding of acceleration than
has been available in the literature to date



Part Il: Variational, Hamiltonian and
Symplectic Perspectives on Acceleration

with Andre Wibisono, Ashia Wilson and
Michael Betancourt




Interplay between Differentiation and
Integration

* The 300-yr-old fields: Physics, Statistics

— cf. Lagrange/Hamilton, Laplace expansions, saddlepoint
expansions

* The numerical disciplines
— e.g.,. finite elements, Monte Carlo
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Interplay between Differentiation and
Integration

* The 300-yr-old fields: Physics, Statistics

— cf. Lagrange/Hamilton, Laplace expansions, saddlepoint
expansions

* The numerical disciplines
— e.g.,. finite elements, Monte Carlo
* Optimization?
— to date, almost entirely focused on differentiation



Accelerated gradient descent
Setting: Unconstrained convex optimization

min f
XE]IRd (X)

» Classical gradient descent:

Xp+1 = Xk — BV (xk)

obtains a convergence rate of O(1/k)



Accelerated gradient descent
Setting: Unconstrained convex optimization

min f
XE]IRd (X)

» Classical gradient descent:
Xk+1 = Xk — BV F(xk)
obtains a convergence rate of O(1/k)

> Accelerated gradient descent:

Ye+1 = Xk — BVF(xk)
41 = (= X)Yit1 + Ay

obtains the (optimal) convergence rate of O(1/k?)



The acceleration phenomenon

Two classes of algorithms:

» Gradient methods

e Gradient descent, mirror descent, cubic-regularized Newton's
method (Nesterov and Polyak '06), etc.

e Greedy descent methods, relatively well-understood



The acceleration phenomenon

Two classes of algorithms:

» Gradient methods

e Gradient descent, mirror descent, cubic-regularized Newton's
method (Nesterov and Polyak '06), etc.

e Greedy descent methods, relatively well-understood

» Accelerated methods

e Nesterov's accelerated gradient descent, accelerated mirror
descent, accelerated cubic-regularized Newton’s method
(Nesterov '08), etc.

e Important for both theory (optimal rate for first-order
methods) and practice (many extensions: FISTA, stochastic
setting, etc.)

e Not descent methods, faster than gradient methods, still
mysterious



Accelerated methods

> Analysis using Nesterov's estimate sequence technique

» Common interpretation as “momentum methods” (Euclidean
case)

» Many proposed explanations:

e Chebyshev polynomial (Hardt '13)

e Linear coupling (Allen-Zhu, Orecchia '14)

e Optimized first-order method (Drori, Teboulle '14; Kim,
Fessler '15)

e Geometric shrinking (Bubeck, Lee, Singh '15)

e Universal catalyst (Lin, Mairal, Harchaoui '15)

But only for strongly convex functions, or first-order methods

Question: What is the underlying mechanism that generates
acceleration (including for higher-order methods)?



Accelerated methods: Continuous time perspective

» Gradient descent is discretization of gradient flow
Xt - _Vf(Xt)

(and mirror descent is discretization of natural gradient flow)



Accelerated methods: Continuous time perspective

» Gradient descent is discretization of gradient flow
Xt - _Vf(Xt)

(and mirror descent is discretization of natural gradient flow)

» Su, Boyd, Candes '14: Continuous time limit of accelerated
gradient descent is a second-order ODE

. 3.



Accelerated methods: Continuous time perspective

» Gradient descent is discretization of gradient flow
Xt - _Vf(Xt)

(and mirror descent is discretization of natural gradient flow)

» Su, Boyd, Candes '14: Continuous time limit of accelerated
gradient descent is a second-order ODE

. 3.

» These ODEs are obtained by taking continuous time limits. Is
there a deeper generative mechanism?

Our work: A general variational approach to acceleration

A systematic discretization methodology



Bregman Lagrangian
Define the Bregman Lagrangian:

L(x,x,t) = eVt (Dh(x + e Yx,x) — eﬁff(x))

v

Function of position x, velocity x, and time t

Dw(y,x) = h(y) = h(x) = (Vh(x),y = x)
is the Bregman divergence

v

Dy (y, )

v

h is the convex distance-generating function

v

f is the convex objective function




Bregman Lagrangian
Define the Bregman Lagrangian:

1 .
£lckot) = e (HIRIE - 2 ) )

» Function of position x, velocity x, and time t
> Dn(y,x) = h(y) — h(x) = (Vh(x),y = x)

is the Bregman divergence
> h is the convex distance-generating function

> f is the convex objective function

> g, B¢, 7 € R are arbitrary smooth functions

» In Euclidean setting, simplifies to damped
Lagrangian



Bregman Lagrangian

L(x,x,t) = erto <Dh(x + e %%, x) — e f(x))

Variational problem over curves:

n /E(Xt,Xt, t) dt

Optimal curve is characterized by Euler-Lagrange equation:

! t

oL oL .
a {8 (XhXh )} = a(XnXt’ t)



Bregman Lagrangian

L(x,x,t) = erto <Dh(x + e %%, x) — e f(x))

Variational problem over curves:

n /E(Xt,Xt, t) dt

Optimal curve is characterized by Euler-Lagrange equation:

! t

oL oL -
dt {8 (Xt7Xt7 )} = a(XhXt) t)

E-L equation for Bregman Lagrangian under ideal scaling:

. . . —1
X + (€% — )X, + e2o+h [v%(xt tex,)| VF(X)=0



General convergence rate

Theorem
Theorem Under ideal scaling, the E-L equation has convergence
rate

F(X:) — F(x*) < O(e™™)

Proof. Exhibit a Lyapunov function for the dynamics:
Ec = Dy (X", Xe+ €720X,) + e™(F(Xe) — F(x")
Ee = —e“ TP De(x*, X)) + (B — ™)™ (F(X;) — f(x*)) < 0

O

Note: Only requires convexity and differentiability of f, h



Mysteries

Why can’t we discretize the dynamics when we are
using exponentially fast clocks?

What happens when we arrive at a clock speed that
we can discretize?

How do we discretize once it's possible?



Symplectic Integration

Consider discretizing a system of differential
equations obtained from physical principles

Solutions of the differential equations generally
conserve various quantities (energy, momentum,
volumes in phase space)

Is it possible to find discretizations whose solutions
exactly conserve these same quantities?

Yes!

— from a long line of research initiated by Jacobi, Hamilton,
Poincare’ and others



Towards A Symplectic Perspective

« We've discussed discretization of Lagrangian-based
dynamics

« Discretization of Lagrangian dynamics is often fragile
and requires small step sizes

« We can build more robust solutions by taking a Legendre
transform and considering a Hamiltonian formalism:

L(q,v,t) = H(q,p,t,&)

dg dv IR dg dp dt d€
dt’ dt dr’' d7’ dr’ dr




Symplectic Integration of Bregman

Hamiltonian
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f(x)

Symplectic vs Nesterov

107 1

100 .

p=2,N=2,C=0.0625,¢=0.1

Symplectic

Nesterov

10 100 1000 10000

Iterations



Symplectic vs Nesterov

p=2,N=2,C=0.0625,¢=0.25

104 | \/Nesterov
Symplectic
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108

1 10 100 1000 10000

Iterations



Part |ll: Acceleration and Saddle Points

with Chi Jin and Praneeth Netrapalli



Problem Setup
Smooth Assumption: f(-) is smooth:
» (-gradient Lipschitz, i.e.
Vx1, X2, [|[VF(x1) — VFI(x2)]| < £|x1 — xa]|.
> p-Hessian Lipschitz, i.e.

Vx1, %, [|[V2F(x1) = V2 (x0)[| < pllx1 — xal|.

Goal: find second-order stationary point (SOSP):
VF(x) =0, Amin(V2f(x))>0.
Relaxed version: ¢-second-order stationary point (¢-SOSP):

IVF)I < e and Amin(V2F(x)) > —/pe



Analysis of AGD in the Nonconvex Setting

» Challenge: AGD is not a descent algorithm
» Solution: Lift the problem to a phase space, and make use of a
Hamiltonian

» Consequence: AGD is nearly a descent algorithm in the Hamiltonian, with
a simple “negative curvature exploitation” (NCE; cf. Carmon et al., 2017)
step handling the case when descent isn't guaranteed

12/14 Michael Jordan AGD Escape Saddle Points Faster than GD



Hamiltonian Perspective on AGD

* AGD is a discretization of the following ODE
¥+0x+Vf(x)=0

* Multiplying by x and integrating from ¢, to t, gives us

1,. 2 Loz A (0. 0,
) 4 el = £C,) ol =0 [l

t1

* In convex case, Hamiltonian f(x,) +-; |, ||* decreases monotonically



Algorithm

Algorithm Perturbed Accelerated Gradient Descent (PAGD)

. fort=0,1,... do

if ||Vf(x:)|| < € and no perturbation in last T steps then
Xt < X + &, & uniformly ~ Bo(r)

ye < X+ (1 —0)v

Xer1 <= Ye —NVIE(Ye);  Veg1 6 Xep1 — Xe

if £(x:) < fye) + (VF(y),xe — yi) — 3%t — y¢[|* then
Xer1 ¢ NCE(x¢, v, 5); vepr <0

No ok b=

» Perturbation (line 2-3);
» Standard AGD (line 4-5);

> Negative Curvature Exploitation (NCE, line 6-7)
> 1) simple (two steps), 2) auxiliary. [inspired by Carmon et al. 2017]



Hamiltonian Analysis

f () between x, and x, + v,

Not too nonconvex

Too nonconvex
(Negative curvature exploitation)

AGD step

v, || small

Do an : : :
. Move in v, direction
amortized
analysis r

f(x;) +2—117 lv,||* decreases

Enough decrease
in a single step



Convergence Result

PAGD Converges to SOSP Faster (Jin et al. 2017)
For ¢-gradient Lipschitz and p-Hessian Lipschitz function f, PAGD with
proper choice of 1,0, r, T,7,s w.h.p. finds e-SOSP in iterations:

5 (el/zp“‘*(f(xo) - f*))

c7/4

‘ Strongly Convex ‘ Nonconvex (SOSP)
. {-grad-Lip & {-grad-Lip &
Assumptions . .
a-str-convex p-Hessian-Lip
(Perturbed) GD o)) O(Ar - 1/€?)
(Perturbed) AGD O(\/2/) O(As - 02 s Jeh)
Condition x la L/\/pe
Improvement VE VE

14 /14 Michael Jordan AGD Escape Saddle Points Faster than GD



Part |VV: Acceleration and Stochastics

with Xiang Cheng, Niladri Chatterji and Peter
Bartlett



Acceleration and Stochastics

« Can we accelerate diffusions?
* There have been negative results...



Acceleration and Stochastics
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 There have been negative results...

« ...but they’ve focused on classical overdamped
diffusions



Acceleration and Stochastics

Can we accelerate diffusions?
There have been negative results...

...but they’ve focused on classical overdamped
diffusions

Inspired by our work on acceleration, can we accelerate
underdamped diffusions?



Overdamped Langevin MCMC

Described by the Stochastic Differential Equation (SDE):

where U(x):R* - R and B, is standard Brownian motion.
The stationary distribution is p*(x) « exp(U(x))

Corresponding Markov Chain Monte Carlo Algorithm
(MCMC):
Ferns = Trs — VU(Fs) + V26,

where § is the step-size and &, ~ N(0,1;x4)



Guarantees under Convexity

Assuming U(x) is L-smooth and m-strongly convex:

Dalalyan’14: Guarantees in Total Variation
If n>0 (E%) then, TV(p™,p*) <€

Durmus & Moulines’16: Guarantees in 2-Wasserstein

If n>0 (E%) then, W,(p™,p*) <e¢
Cheng and Bartlett'17: Guarantees in KL divergence

If n 2> 0 (%) then, KL(p™,p*) < e



Underdamped Langevin Diffusion

Described by the second-order equation:

dxt — Utdt
dvt — —)/Utdt + AVU(xt)dt + \/ 2]//1 dBt

2
The stationary distribution is p*(x, v) « exp (—U (x) — %)

Intuitively, x; is the position and v; is the velocity

VU (x;) is the force and y is the drag coefficient



Discretization

We can discretize; and at each step evolve according to

dft — ﬁtdt
dv, = —y¥,dt — AVU(|s/s15)dt + /2y dB,

we evolve this for time 6 to get an MCMC algorithm

Notice this is a second-order method. Can we get faster rates?



Quadratic Improvement

Let p(™ denote the distribution of (¥,,5, ¥,,5). Assume U (x) is
strongly convex

Cheng, Chatterji, Bartlett, Jordan ’17:
Vd

lfn=>0 (?) then Wz(p("),p*) <€

Compare with Durmus & Moulines '16 (Overdamped)
Ifn >0 (;iz) then W, (p™,p*) < €



Intuition: Smoother Sample Paths

x¢ IS much smoother for Underdamped Langevin Diffusion, so easier to
discretize

Overdamped Langevin Diffusion Underdamped Langevin Diffusion



Beyond Convexity?

So far we assume U(x) is m- strongly convex

U(z) \/ p*(z) /\

Goal: Establish rates when U(x) is non-convex

Multiple modes



Strongly Convex Outside a Ball

1. Smooth everywhere
v,y [VUX) —VUW)I, < Llx —y |2

2. Strongly convex outside a ball vx,y: |[x —y|, = R

(VUX) =VU(y),x—y)zmlx =y |,

Cheng, Chatterji, Abbasi-Yakdori, Bartlett, & Jordan ’18:
To get W, (p™,p*) < e:

2
eCLR d
62

Overdamped MCMC : n > 0(

ecLRZ\/a>

€

Underdamped MCMC needs: n = 0 (




Proof ldea: Reflection Coupling

Tricky to prove continuous-time process contracts. Consider

two processes,

where x, ~ po and y, ~ p*. Couple these through Brownian motion

2-(xp =y )y —y)'

4B = [laxa - xe — el
2

dB¥

“reflection along line separating the two processes”



Reduction to One Dimension

By 1t6’'s Lemma we can monitor the evolution of the separation distance
dlx; — vel, = — dt + 2v2dB}

'1-d random walk’
Two cases are possible

1. If |x; — y¢|, < R then we have strong convexity; the drift helps.
2. If |x; —y:|, = R then the drift hurts us, but Brownian motion helps stick’

Rates not exponential in d as we have a 1-d random walk

*Under a clever choice of Lyapunov function.



Population Risk vs Empirical Risk

4

1

Well-behaved population risk = rough empirical risk

» Even when R is smooth, l?,, can be non-smooth and may even have
many additional local minima (ReLU deep networks).

> Typically [|R — Ralleo < O(1/+/n) by empirical process results.



Population Risk vs Empirical Risk

1

1

Well-behaved population risk = rough empirical risk
» Even when R is smooth, l%,, can be non-smooth and may even have
many additional local minima (ReLU deep networks).

> Typically [|R — Ralleo < O(1/+/n) by empirical process results.

Can we finds local min of R given only access to the function value R,?



Our Contribution

Our answer: Yes! Our SGD approach finds e—~SOSP of F if v < ¢'°/d,
which is optimal among all polynomial queries algorithms.



ZPSGD Algorithm

Algorithm Zero-th order Perturbed SGD (ZPSGD)
1. fort=0,1,...do
2. sample (zgl),--- 7zgm)) ~ N(0,021)
3.0 gelx) & D7 20 [ (xe +2¢)) — F(x)]/(mo?)
4. Xpy1 — xe — 0(ge(xe) + &), & uniformly ~ Bo(r)

v

Computing stochastic gradient of smoothed function (line 2-3);

for (x) =Epmn(o,0on) [F(x + 2)]
Vs (x) =Epon0,0on [2(F(x + 2) — £(x))]/0?

» Perturbation (line 4).



Our Contribution

Our answer: Yes! Our SGD approach finds e—~SOSP of F if v < ¢'°/d,
which is optimal among all polynomial queries algorithms.

LExponential queries algorithm (Thm. 8)

SGD (Thm. 7)

SGLD (Zhang et al.,

Complete characterization of error v vs accuracy € and dimension d.



Discussion

Data and inferential problems will be everywhere in
computer science, and will fundamentally change

the field

Many conceptual and mathematical challenges
arising in taking this effort seriously, in addition to
systems challenges and “outreach” challenges

Facing these challenges will require a
rapprochement between computational thinking and
inferential thinking

This effort is just beginning!



Reference

« Wibisono, A., Wilson, A. and Jordan, M. |. (2016).
A variational perspective on accelerated methods in

optimization. Proceedings of the National Academy
of Sciences, 133, E7351-E7358.





