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This five-step user's guide to statistical estimation is designed for individuals with little or no 
experience with regression modeling. The use of this powerful tool to make educated guesses is 
discussed in the context of a simple example in Microsoft Excel. The reader has three choices: 
read the text and ignore the integrated example; read the text and the example; or, read the text 
and reproduce the example. After reading and working the example we hope you'll be motivated 
to create you own model predictions. Improving our guesses can help save time and money.  

1. Define the Problem. 
The objective is to make an educated guess about the future value of something that's important 
to you. No crystal ball? Don't despair. Let us take you on a step-by-step journey to the "mother of 
all guesses"-a statistical estimate.  

Example: Suppose we're asked to predict next year's operating costs for a newly formed 
computer-network service organization. 

2. Identify the Prediction Variable.  
Identify what you want. Call it the prediction variable. Can this variable be quantified-for example, 
measured in $'s, mph, time for repairs,...? If yes, is any historical data available? If the variable 
can be measured, and data are available, then collect the appropriate data. Alternatively, find a 
quantifiable proxy variable-one that approximates the original variable-supported with appropriate 
historical data.  

Example and Exercise : A benchmarking study was conducted using a sample of 16 
computer-network service organizations identified by the Government Accounting Office 
(GAO). Annual operating costs were reported for each organization for the past year. The 
sample data for our prediction variable-annual operating cost-ranges from a low of $26.89 
million to a high of $125.10 million. In Excel type the cost data in the second column of 
Sheet 1 of your workbook in cells B3 to B18, or (B3:B18).  

Center 
Annual Operating 

Cost in $mil 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

56.57 
89.12 
36.70 
83.70 
70.21 
73.10 
80.06 

125.10 
89.63 
26.89 
77.53 
81.68 
60.51 
86.89 
50.87 

106.30 



 
What might account for the variation in operating costs? 

3. Build a Prediction Model: 
Uncover some explanations and develop a relationship. The objective is to make an educated 
guess of the future value of your prediction variable. It helps to build a prediction model. But like 
any good relationship, building a prediction model takes some effort. The challenge is to uncover 
explanations or factors that account for differences observed in the prediction variable data. The 
logic is simple. If these factors adequately explain past variations, they might help predict the 
future. The relationship you develop between these factors and your prediction variable is your 
prediction model. The prediction you generate from your prediction model is the "mother of all 
guesses."  

A. Develop a list of relevant factors. What factors help explain, or drive, the variation you 
observe in your prediction variable data? The factors you include might come from your 
personal knowledge, judgment, or experience, the consensus of experts, or from theoretical 
economic or engineering models. These factors, are also called explanatory variables, or in 
the case of statistical cost estimation, cost drivers.  

Example and Exercise : What factors might explain variations in annual operating costs in 
our sample of computer service organizations? Let's focus on three cost drivers:  

Cost Driver Definition 

Size: 
Coverage: 
Workload: 

Number of employees 
Square miles of service area 
Number of offices on network 

 

B. Consider the effects. Once a relevant factor is identified, the next step is to consider 
what impact it has on your prediction variable. How are the two related? Is there a direct (or 
positive) relationship between the two-does the prediction variable increase with increases in 
the factor? Or is there an inverse (or negative) relationship between the two-does the 
prediction variable decrease with increases in the factor? Here, theoretical models, 
experience, judgment and instinct are all valid guides.  

Example and Exercise : Examining one factor at a time, do you think a larger size (or 
coverage or workload) corresponds with higher or lower costs? 

C. Collect data. Once you identify the relevant factors, collect the appropriate data. Make 
sure the data for the explanatory variables corresponds to the data for the prediction 
variable.  

Example and Exercise : Data were collected on the size, coverage, and workload for each 
of the 16 organizations in the benchmarking study.  

Center 
Annual Operating 

Cost in $mil 
Number of 
Employees 

Geographic 
Area 

Offices On 
Network 

1 
2 
3 

56.57 
89.12 
36.70 

70 
100 
60 

40 
70 
10 

30 
20 
70 



4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

83.70 
70.21 
73.10 
80.06 

125.10 
89.63 
26.89 
77.53 
81.68 
60.51 
86.89 
50.87 

106.30 

90 
50 
10 
80 
90 
60 
10 
40 
90 
50 

100 
30 

100 

50 
40 
70 
50 
50 
40 
20 
60 
50 
40 
20 
20 
50 

120 
90 
40 
30 
60 
70 
90 
20 
30 

200 
10 
20 
10 

 
Type data for "Number of employees" in cells (C3:C18), data for "Geographic area" in cells 
(D3:D18), and data for "Offices on network" in cells (E3:E18) of Sheet 1. The resulting 
table of data in your spreadsheet should look similar to what is above.  

D. Plot each factor independently against the prediction variable. Do the graphs confirm 
the relationships we expected? If not, there are only two things to review: our data and our 
logic.  

Example and Exercise : In your Excel worksheet, copy cells (C3:C18) to cells (A3:A18) of 
Sheet 2. Copy cells (B3:B18) to cells (B3:B18) of Sheet 2. Select cells (A3:B18) of Sheet 
2. In the Toolbar just under the Menu, press the button toward the right that looks like a 
little bar chart with a magic wand over it. This activates the Excel Chart Wizard. Move the 
cursor to an open part of the sheet and click the left mouse button. The Chart Wizard 
dialog box now opens. Choose Next to go to the next dialog screen. Now choose XY 
(Scatter) to make a scatter plot. On the next screen, choose Format 1. On the next screen, 
choose Finish. You should now see a scatter plot of Number of Employees against Cost. 
Repeat the procedure to create scatter plots of Geographic Area against Cost and Offices 
on Network against Cost. Your scatter plots should look similar to those below. Do you see 
the same relationships that you hypothesized in the previous question?  



  

E. Develop a prediction model-use linear regression. Once we settle on a set of 
independent explanatory variables [1], the next step is to run a regression. Running a 
regression simply involves inputting data into a computerized regression package. 
Regression packages automatically uncover the best linear relationship between your 
explanatory variables and your prediction variable. [2] This best linear relationship is your 
prediction model. Regression results are typically reported in a table. Digesting the summary 
output takes a little practice. We discuss what to look for below. The ultimate result is the 
"mother of all guesses"-a statistical estimate, also known as a prediction or a forecast.  

Example and Exercise : Go back to Sheet 1 of your workbook. From the Menu, select 
Tools - Data Analysis - Regression. Place the cursor in the "Input Y range" space, then 
select (B3:B18) from the sheet. Now place the cursor in the "Input X range" space, then 
select (C3:E18) from the sheet. Under Output Options, select New Worksheet Ply, and 
type "Results" in the associated space. Choose OK. After some crunching, you should 
have a sheet titled "Results" that looks like this:  

Regression Statistics 

Multiple R 
R Square 
Adjusted R Square 
Standard Error 
Observations 

0.8166 
0.6669 
0.5836 

15.9246 
16  

ANOVA 

 df SS MS F Signifance 
F 

Regression 
Residual 

3 
12 

6091.9404 
3043.1068 

2030.647 
253.592 

8.0075 0.0034  



Total 15 9135.0472 
 

 Coefficients Standard 
Error t Stat P-

value Lower 95% Upper 
95% 

       

Intercept 
Number of 
Employees 
Geographic Area 
Offices On 
Network 

18.9199 
0.4557 
0.6590 

-0.0279 

15.0320 
0.1391 
0.2376 
0.0848 

1.2586 
3.2753 
2.7738 

-0.3284 

0.2321 
0.0066 
0.0168 
0.7482 

-13.8320 
0.1526 
0.1413 

-0.2127 

51.6719 
0.7589 
1.1766 
0.1570 

         

F. Understand the model. Buried somewhere in the regression output are a set of 
coefficients. These are the keys that unlock your prediction model. The coefficients reveal 
the best linear relationship that exists between your explanatory variables and your 
prediction variable. To make a guess (or statistical estimate), simply enter the appropriate 
values into the prediction model and then do the required multiplication and addition.  

Example: The prediction model buried in the summary output is:  
Cost=18.92 + .456(X) + .659(Y) - .028(Z) ------- where: 

X = Number of Employees 
Y = Area of Service 
Z = Offices in Network  

To obtain the "mother of all guesses", simply multiply the projected number of employees 
by .46, the projected area of service by .66, sum the two, then subtract .03 times the 
projected number of offices in the network, and add 18.9.  

G. Check the model. Before we get too excited about a prediction, it's a good idea to see 
how much confidence we can have in our model. Here is a list of basic questions to answer:  

• How well does the prediction model explain past variation in our prediction variable? 
The best we could hope for is that our model explains 100% of the past variation in 
our prediction variable. The R square (R) statistic reveals the fraction of any past 
variation explained by our model. An R measure lies somewhere between zero (the 
prediction model is no help) and one (the prediction model explains 100% of past 
variation). The closer R is to one, the more confidence we have in the model. But be 
cautious. It's possible to make useful predictions from models with low R, and 
useless predictions from models with high R. Let common sense prevail.  

Example and Exercise : What is the R square (R) of the regression?  

From our summary output, the R is .67. Thus the factors we included (i.e. Size, Workload 
and Coverage) explain almost 70% of the variation in our sample of operating costs.  

• Do the explanatory variables have the right sign? Examine the signs of the 



coefficients. Does the data support our hypothesis of a direct (positive), or an 
inverse (negative), relationship between a specific factor and the prediction 
variable? If not, why not?  

Example and Exercise : Do the signs of the coefficients agree with what you expected? In 
this case, the signs indicate Size and Workload directly increase costs (a positive 
relationship), while greater Coverage tends to reduce costs (a negative relationship). Do 
these results make sense? If not, perhaps the relationship is different than what we 
expected. Or something may be peculiar about the sample we chose. Is it truly 
representative of the job we have in mind? Or perhaps the explanatory variables used are 
not good proxies for what we really want to measure. We might want to consider other 
measures.  

• Are the explanatory variables significant? If a coefficient is zero, the associated 
explanatory variable doesn't help-it is not statistically significant. Although 
coefficients reported in regression outputs are never zero, that doesn't mean they're 
significant. Since reported coefficients are derived using sample data, the reported 
coefficients are estimates, not the true values. The probability a coefficient is zero is 
given by its p-value. Say a reported coefficient has a p-value of .05. This means 
there is only a 5 in 100 chance we would get the reported coefficient value if the true 
coefficient were zero. In other words, there's a good chance the associated 
explanatory variable is significant.  

Example: Which explanatory variables are significant? Look at the corresponding p-
values. For example, the coefficient for the Number of employees has a p-value of .007. 
This means there is a tiny, 7 in a 1000, chance that the size of the estimated coefficient's 
value is simply due to sampling error. More likely, both the coefficient and the associated 
explanation are significant. On the other hand, the coefficient for Offices on network has a 
p-value of .748. That's a fairly high likelihood the estimated coefficient's value is a result of 
sampling error and is not statistically significant. In this case, we might be tempted to run 
another regression eliminating the variable. But then, why was the explanation included in 
the first place? If, upon reflection, we conclude the factor should really be there, then even 
if it's not significant, it's best to keep it, and to explore the apparent conflict between our 
theory and our data.  

 

Congratulations! You now have a prediction model, and some appreciation of how good it is.  

4. Guessing With Our Prediction Model: 
Exactly wrong versus approximately right. A first guess: Exactly wrong. To obtain your first guess, 
you must enter the anticipated future values of your explanatory variables into your prediction 
model. So before you can predict anything, you need some educated guesses about the future 
values of your explanatory variables. Experts' opinions, trend models, regression models, or other 
techniques can be used to obtain these values. Then all it takes to get your prediction is some 
multiplication and addition.  

Example and Exercise : Suppose we know the following about our new organization:  

Number of employees: 
Area of service: 
Offices on network: 

About 50 
40 square miles 
90 

How would we predict the cost of this operation? Our prediction model suggests the cost will 



be about:  

Cost=18.92 + .456(X) + .659(Y) - .028(Z) ------- or: 

  18.92 

X = Number of Employees = 50 x  
Y = Area of Service = 40 x  

Z = Offices in Network = 90 x  

+.456 =  
+.659 =  
-.028 =  

22.80 
26.36 
-2.52 

  65.56 
 

How confident can you be in your prediction? Consider this. In the example above, Firm 5 
coincidentally has the same size, coverage and workload characteristics as the proposed new 
organization. Yet when we compare our prediction of operating cost of $65.51mil, with Firm 5's 
actual operating cost of $70.21mil, there is an unexplained difference of nearly $5 mil. This 
difference is due to the fact our model isn't perfect. Some of the variation in our prediction 
variable data is not accounted for by the model. As a consequence, point predictions are 
deceptively precise-they're often "exactly wrong."  

A second guess: Approximately right. Another guess that is "approximately right involves building 
an interval around your point prediction. The interval accounts for both the point prediction and 
the unexplained variation. This prediction interval is sloppier to report, since it involves a range of 
values. However, unlike our first guess, we can express some confidence in our second guess. 
The standard error of the estimate is a measure of the unexplained variation. To construct a 
rough prediction interval around your point prediction, simply add and subtract twice the standard 
error of the estimate. You can be 95% confident the true value lies somewhere between the 
upper and lower bounds of your interval. This is truly the "mother of all guesses." [3]  

Example and Exercise : Construct a 95% prediction interval. The prediction of future 
operating costs was $65.56 million. The reported standard error of the estimate is $15.92 
million. The 95% prediction interval is million, or [$33.72 million, $97.40 million]. Based on 
our data, we can be 95% confident the true operating cost for our new organization will lie 
between $33.72 mil and $97.40 mil.  

What if your boss objects to the sloppiness of the reported prediction interval? Unfortunately, 
there are only three ways to shrink a prediction interval: find better explanations, collect more 
data, or sacrifice confidence. The cruel reality of working with sample data is that we're forced to 
trade-off confidence for precision. Our first (precise) guess-a point prediction-is "exactly wrong." 
Our second (imprecise) guess-a prediction interval-is "approximately right."  

5. Be careful! 
Regression can be hazardous to your health. Now that you can build a prediction model, you're 
dangerous. You can hurt yourself, and others-unless you remember a few things:  

• Do not extrapolate too far beyond the range of the observed data. If future factor values 
are much different than the means of our past factor data, you'll get sloppy results, i.e. 
wide prediction intervals. In this case a point prediction is exactly wrong, and your 
prediction interval doesn't help much. Then it's on to simulation models, or back to the 
crystal ball... 

• Do not confuse correlation with causation. Your original model includes explanations or 
factors you believe help to understand past variations in your prediction variable. 



However, if recent structural changes (say the end of the cold war, revolutionary new 
software, the Internet, etc.) dramatically affect the process that generated your past data, 
then your prediction model may be worse than worthless-it could be misleading.  

Finally, bear in mind that making educated guesses using prediction models is as much art as 
science. We often learn more about our problem from the formal process of obtaining educated 
guesses. So return to step one and review the prediction variable. Make sure you're making 
guesses about the right thing. Then make sure the prediction model still makes sense. Evaluate 
the possibility of obtaining more and/or better data to refine or test the model. Finally, remember 
that, much like in life, the process is as valuable as the product. The product is your prediction. 
The process makes you smarter.  

Endnotes:  

1. We must be careful in deciding which factors to include in our model. While we need to include 
factors that are related (or help explain variations in) the prediction variable, these factors should 
be unrelated to one another. If we, our experts, or our theory suggest two or more important 
factors should be included that are highly related to one another, we can only choose one-
presumably the one most related to our prediction variable. If our explanatory variables are highly 
correlated, the regression cannot separate the effects of the explanatory variables on the 
prediction variable. This can eliminate any confidence we have in interpreting the marginal impact 
of a change in one of our explanatory variables on our prediction variable.  

2. The best relationship is the one that best fits our data-the relationship that, when used to make 
guesses about what we already know, gives us the least errors. Given the appropriate data a 
linear regression can be computed using virtually any modern spreadsheet package. An example 
using Excel appears in the text. Regression packages report the linear relation (intercept and 
slope coefficients) that minimizes the sum squared errors between the guesses made by the 
linear relation and the actual historical values of the prediction variable.  

3. There is nothing magic about 95%. All other things equal, the more confident you need to be 
the sloppier (or wider) the interval. More precise (narrower) intervals can be always be achieved 
at the expense of confidence. A better prediction interval also accounts for the fact that the further 
away future factor values are from the means of the past historical data, the sloppier (or wider) 
your prediction interval. This comes from the fact that we use model parameters that are 
estimated from sample data, not the true parameters. There are many other technical issues 
involved in using regression analysis. For more information, a good reference is Applied Linear 
Regression Models by Neter, Wasserman, and Kutner.  
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