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Abstract—The Naval Postgraduate School is developing a 
laboratory environment for testing advanced beam control 
methods for compensation of atmospheric turbulence in 
adaptive optics for use in a maritime environment.  This 
paper presents a multichannel transverse adaptive filter for 
beam control.  Adaptive filters are useful for such control 
due to the constantly changing nature of atmospheric 
turbulence.  A multichannel filter is required due to the 
multiple deformable mirror input commands and wavefront 
sensor output measurements in the system.  The filter is 
augmented with an integrated bias estimator.  Additionally, 
this paper describes a method for generating horizontal-like 
atmospheric turbulence by using two liquid crystal spatial 
light modulators.  The development and components of the 
new laboratory testbed are described, and preliminary 
simulation results are presented.12 
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1. INTRODUCTION 
The Naval Postgraduate School is developing a laboratory 
environment for testing advanced beam control methods for 
compensation of atmospheric turbulence in adaptive optics. 
Previous adaptive optics work at the NPS has been applied 
primarily to vibration control and segment alignment for 
space telescopes and segmented mirror systems [1], [2].  
The use of robust control has been explored with segmented 
mirror systems as well [2].  Adaptive filters have been used 
by the NPS in the control of optical beam jitter [3], [4], but 
this is the first time they will be used by the NPS for 
compensation of atmospheric turbulence.  However, UCLA 
and the Starfire Optical Range have used multichannel 
filters in astronomical adaptive optics systems [5], [6]. 

Maritime beam control for shipboard applications and high 
energy lasers is of great interest to the Navy.  Horizontal 
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and slant path turbulence present a more difficult and less 
well understood problem than the vertical and near-vertical 
turbulence paths used for astronomical adaptive optics.  As 
such, current research is underway to develop a testbed for 
developing beam control methods in the presence of a thick 
aberrator that will approximate horizontal turbulence. 

The Technique of Adaptive Optics 

Adaptive optics (AO) is useful in correcting for aberrations 
in imaging and communications systems caused by 
turbulence or other disturbances in the propagation medium.  
A typical adaptive optics system is shown in Figure 1.  The 
three primary components of an AO system are a wavefront 
sensor to determine how the beam is distorted, a control 
computer to calculate the correction to be applied, and a 
corrective element, usually a deformable mirror (DM), to 
implement the applied commands [7]. 

 
Figure 1 – Typical adaptive optics system with SH WFS 

In this system, a reference beam that sees the same 
disturbance as the target is sent to the wavefront sensor.  A 
Shack-Hartmann (SH) wavefront sensor (WFS) is an array 
of lenslets which produces a grid pattern of spots on a 
detector.  An ideal wavefront is flat, producing a known grid 
pattern, while an aberrated wavefront will produce some x 
and y offsets from the reference grid.  Thus, the sensor 
measures x and y positions on the detector and the computer 
determines the slope of the wavefront from the offsets.  
Figure 2 shows a schematic of a SH WFS. 

The control computer uses the slope error from the sensor to 
determine what commands to send to the deformable mirror 
to correct for the error.  Finally, the mirror deforms 
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according to the received commands and the process 
repeats, actively correcting for the changing turbulence. 

 
Figure 2 – SH WFS schematic (reproduced in Ref.[1]) 

 

Classical Control in Adaptive Optics 

The control computer determines mirror commands from 
Shack-Hartmann wavefront sensor measurements using the 
influence, or poke matrix.  Each individual actuator is 
“poked,” or sent a maximum or near-maximum voltage, 
while all other actuators are held at zero.  The slope 
measurements corresponding to each poked actuator form 
the columns of the poke matrix.  The sensor-command 
relationship is: 

 =y Γc  (1) 

where y is the vector of sensor outputs (both x and y 
measurements for each lenslet), Г is the poke matrix, and c 
is the DM command vector.  A calibration process prior to 
the experiment determines the poke matrix.  Once the 
matrix is known, the necessary DM commands can be 
obtained from a vector of sensor outputs by using the 
pseudoinverse, Г†, of the poke matrix.  Since there are 
usually more sensor measurements than DM actuators, this 
forms the least squares solution to the correction problem. 

Often in adaptive optics systems it is desirable to reconstruct 
the wavefront phase from the slope information.  However, 
this paper is more concerned with determining the control to 
be applied to improve the wavefront than with knowing 
what the wavefront actually looks like.  Also, since 
knowledge of the wavefront shape is not necessary for this 
reconstruction method, additional computation time is 
saved.  Therefore, the poke matrix in this case may be 
referred to as the “reconstructor” in lieu of having an actual 
wavefront reconstruction step in the process. 

Once the poke matrix has been determined, a classical 
integral controller is written in the form: 

 new old g= − †c c Γ y  (2) 

where g is the integral gain.  This controller will be 
augmented using adaptive filters as described in Section 2.  
Adaptive filters are desirable in adaptive optics as opposed 
to or in addition to fixed-gain reconstructor algorithms due 
to the rapidly changing nature of atmospheric turbulence.  
Adaptive filters vary the gains or filter weights as time 
progresses to better correct for varying parameters.  To 
avoid confusion, it should be noted that adaptive control 
refers to the updating of gains in the correction algorithm, 
while adaptive optics refers to the presence of a component 
in the system that corrects by adapting, or varying, the 
beam’s optical path length. 

2. ADAPTIVE FILTER 
The NPS began research in adaptive filters for use in the 
control of optical beam jitter in space applications. Current 
research efforts include jitter control in high energy laser 
systems for maritime applications as well. 

Adaptive filters can be infinite impulse response (IIR) or 
finite impulse response (FIR).  IIR filters respond 
indefinitely because they contain internal feedback, yet for 
the same reason they can become unstable [8].  The 
response of an FIR filter dies off after a finite duration, and 
the filter itself is inherently stable.  The filter used here is an 
FIR filter.  Two commonly used implementations of an FIR 
filter include transverse and lattice.  The simpler transverse 
implementation will be described here.  An Lth order 
transverse FIR adaptive filter has the structure shown in 
Figure 3.  Each of the L stages, or taps, delays the input 
signal by one unit, which leads many to call this filter a 
tapped-delay line.  The filter output is expressed as follows: 
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where )(nw  is the filter weight vector of length L+1 whose 
ith component is )(nwi , )(nx  is the vector of delayed inputs 

)( inx − , and )(ny  is the filter output. 
 

 
Figure 3 – Transverse FIR adaptive filter structure 

 

Least Mean Square (LMS) Adaptive Filter 

Figure 4 shows the simplest implementation of an adaptive 
algorithm.  The objective here is to minimize the error )(ne , 
the difference between filter output )(ny and a desired 
response or disturbance, )(nd : 
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 )()()()( nnndne xwT−= . (4) 

 

 
 

Figure 4 – Implementation of adaptive filter 

When the statistics of the disturbance and the reference 
signal are available, the weights that minimize the mean 
square error (MSE), expectation of 2)(ne , can be computed. 
However, such information is often not available a priori in 
practice.  In the Least Mean Square (LMS) adaptive filter 
developed by Widrow [9], the instantaneous squared error is 
minimized instead of MSE by a steepest gradient descent 
method updating the weights in the direction of lower error. 
The standard form of the LMS algorithm is given as follows, 

 )()()()1( nennn xww α+=+           (5) 

where α is the adaptation rate. 

The LMS method can be made more practical by a 
“Filtered-x” technique discussed by Widrow [9] and Kuo 
[10]. The filtered-x method accounts for the reality that a 
control signal must pass through a physical actuator before 
the result is sensed at the error sensor.  The secondary plant 
contains information on the interaction between sensor and 
actuator, and its effect on the control action must be taken 
into account for improving performance and preventing 
instability in the system.  Figure 5 shows an adaptive system 
with an Ith order filter, W , followed by the secondary plant 
transfer function, )(zS . 

 

Figure 5 – Adaptive filter shown with secondary plant as 
in a real system 

It is shown in Kuo [12] that in using the steepest gradient 
descent LMS algorithm when a secondary plant is present, 
the reference must be filtered by an estimate of this plant, 

)(ˆ zS , before the reference is fed to the adaptive algorithm 
so that the adaptive filter produces a command that cancels 
the disturbance after, and not before, going through the 
secondary path dynamics. The final form of the system 
including the secondary plant is as shown in Figure 6.  In 
practice, )(zS  may include system interactions that are 
difficult to model precisely, and the adaptive algorithm can 
compensate these modeling uncertainties in )(ˆ zS  if the 
modeling error is not too large. 

 

Figure 6 – Final system accounting for secondary plant 

In the adaptive optics control problem, an external reference 
correlated to the disturbance is not available.  Following the 
development by Kuo in [10], an internal reference, )(nr , 
which is an estimate of the disturbance, is generated by 
removing the effect of the adaptive filter output on the error 
as shown in Figure 7.  If the model is precise, the reference 
signal becomes the disturbance itself. 

 

Figure 7 – Adaptive controller diagram with internally 
generated reference 

Since obtaining a reference signal from the error forms a 
feedback path for the adaptive filter, it is called a feedback 
adaptive filter.  Once all weights are converged, the adaptive 
system behaves as a Linear Time Invariant (LTI) system and 
therefore it is subject to the fundamental limitation of 
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feedback systems known as the Bode's integral theorem, or 
the waterbed effect.  In addition, because there is a delay in 
estimating the disturbance, the ability of a true feedforward 
controller to address broadband disturbances is now limited.  
Feedback adaptive filters are most effective in addressing 
periodic, or narrowband disturbances.  Adaptive filters also 
have difficulty when addressing constant bias without 
certain modifications [11].  

In order to overcome these limitations, the adaptive 
controller is often placed in parallel with a classical 
controller, such as Proportional-Integral (PI) controller. 
Figure 8 shows some of the possible configurations of such 
a controller.  The adaptive filter is denoted as )(zA  and the 
PI controller is denoted as )(zC .  There is assumed to be a 
delay in the system represented by qz − , and )(ˆ zS  is the 
model of the secondary path.  The path from the error to the 
adaptive filter is omitted for a clearer view of the diagram, 
as it is not critical for the issues discussed here. 
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Figure 8 – (a) Adaptive filter output applied before PI,  

 (b) Adaptive filter output applied after PI, 
 (c) Decoupling of PI and AF loops 
 

The diagram in (a) applies the output of the adaptive filter 
before the PI controller, and the secondary path transfer 
function at steady state in this case is given by the transfer 
function of the closed PI loop. 

)(1
)()(ˆ

zCz
zCzS

q−+
=   (6) 

Note that the secondary path is from the point the adaptive 
filter output is applied to the point before the disturbance is 
added.  In this configuration, the adaptive filter weights will 
not converge if the disturbance contains a DC component, 
or a bias, and it will have some oscillation at steady state 

unless the bias is cancelled by the adaptive filter by 
accident.  In general, the FIR filter is not capable of 
producing a bias output unless the input contains a bias 
component, and it cannot produce bias free output unless the 
input is a bias free signal.  Although the PI control loop is 
supposed to remove the bias component in the loop, the 
adaptive filter and PI controller interact adversely and result 
in a residual error.  More detailed analysis of this issue is 
given by Yoon, et. al., in [11], and a solution for the 
problem called bias integration is presented, which will be 
applied to the controller in this study. 

In the case of (b), the secondary path model becomes the 
sensitivity transfer function of the PI control loop as shown 
below. 

)(1
1)(ˆ

zCz
zS

q−+
=      (7) 

Since the transfer function eliminates any DC component, 
the adaptive filter produces only no-bias component in the 
error. Meanwhile, the PI controller eliminates any remaining 
bias component in the error.  The sensitivity transfer 
function, however, has significant attenuation in the lower 
frequencies as well and the effective gain of the adaptive 
filter in the low frequency range becomes very small, 
possibly leading to slower convergence. 

For case (c), the secondary path is the same as in (a), but the 
reference signal is generated using only the output of the 
adaptive filter, which effectively decouples the adaptive 
filter and the PI controller feedback loops so that they do not 
interact. The reference signal in this case is given by: 

)(
)(1

)( zd
zCz

zzr
q

q

−

−

+
=       (8) 

As can be seen in Eq. (8), any bias component in the 
disturbance will be eliminated by the transfer function 
applied to the reference signal.  Diagram (a), on the other 
hand, removes the effect of both controllers from the error 
and )(zr  becomes the estimate of )(zd , which includes the 
bias and causes adverse interaction between the adaptive 
filter and the PI controller.  Gibson has implemented the 
feedback adaptive filter in the (c) configuration successfully 
in [5] and [6]. 

 
Multichannel LMS Adaptive Filter 

Since an AO system is a Multi-Input and Multi-Output 
(MIMO) system, the LMS adaptive algorithm needs to be 
extended for use with multiple channels. Discussion of  
multichannel LMS can be found in Elliot, et. al. [12], 
Edwards [13], and Kuo [10].  For a multichannel adaptive 
filter, the number of reference signals can be independent of 
the number of the sensors or actuators.  For M error sensors, 
K control actuators and J reference signals, there are M x K 
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secondary path models and K x J weight vectors.  Each 
secondary path model represents the relationship between 
the control action by the kth actuator and the error observed 
by the mth sensor.  The command for the kth actuator is 
generated combining all reference signals with weight 
vectors as shown below. 
 

1 1

( ) ( ) ( ) ( )
J J

k kj kj j
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y n y n n n
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The formula for updating the weight vector kjw  is given as 
follows based on the steepest gradient descent method, 

 )()()()1(
1

nennn m

M

m
jkm∑

=

+=+ xww kjkj α , (10) 

where α  is the adaptation rate and )(njkmx  is )(njr  filtered 
by the secondary path )(zSmk .  Assuming a rigid 

deformable mirror, meaning that mirror dynamics can be 
ignored, the secondary plant reduces to the dynamics of any 
control loop in the system and the mirror’s poke matrix.   

For a multichannel adaptive filter, the error can be taken 
either in actuator space or in sensor space and any number 
equal to or smaller than M can be the number of error 
signals to be used in the weight update.  Similarly, the 
reference signal can be generated either in actuator space or 
sensor space.  There is no restriction on the number of 
reference signals J.  The secondary path model mkŜ   is 
determined by the transfer function from the point where the 
actuator action is applied to the point before the disturbance 
is applied.   
 
Sensor Space Error LMS 

Suppose there is a poke matrix between the PI controller 
and the disturbance in (a) of Fig. 8.  For the error measured 
by all M sensors, the secondary path is written as  
 

mkqmk zCz
zCzS Γ

+
=

− )(1
)()(          (11) 

 
and the filtered reference is written as: 
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and the summation term on the right hand side of Eq. (10) 
can be written as: 
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Letting )()( nn T ee' Γ= , the converted error vector is of 
length K and an alternative expression of the weight update 
equation can be obtained as follows:

  
 )(')()()1( nennn kjkjkj x'ww α+=+             (15) 

 
This form has a slight advantage in implementation in the 
Simulink environment.  
 
Actuator Space Error LMS 

If the error is measured in actuator space after applying the 
matrix †Γ , the matrix relating the actuator input to the 
measured error is †Γ Γ .  The formulation of LMS can be 
obtained by replacing Γ  by †Γ Γ  in Eqs. (11), (12), and (14).  
Since †Γ Γ  is an identity matrix by definition of †Γ , the 
converted error becomes )()( nn ee' =  and Eq. (15) can be 
rewritten as: 
 

)()()()1( nennn kjkjkj x'ww α+=+   (16) 
 
If the reference signal is also obtained in actuator space, the 
computation of the FIR filter and weight update can be 
reduced by decoupling all channels, i.e, using only kx  and  

)(zek for generating the kth actuator command.  This is 
because the actuator action of one channel does not affect 
the error in the other channels and the reference signal to 
generate the canceling signal for a particular channel can be 
obtained from the error solely from that channel.  This is 
equivalent to setting 0)( =nkjw  for all kj ≠  in Eq. (9) and 
computing Eq. (16) only for )(nkkw . 
 
For this decoupled channel LMS, the adaptation rate needs 
to be set separately for each channel because of the 
difference in the error levels between the channels.  
Otherwise, the adaptation rate needs to be set very 
conservatively to account for the channel with largest 
disturbance, and the convergence of channels with small 
disturbances becomes very slow.  In the coupled 
multichannel case, all reference signals are combined for all 
channels, which has an averaging effect on the error level 
differences among the channels.   
 
Another way to approach this issue is to normalize the 
reference signal by the following formula, 
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and replace )(njx'  in Eqs. (15) and (16) with )(nj'x' . 
Here, ε  is a small number to avoid dividing by zero. 
Normalization requires more computation but it can prevent 
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the controller from becoming unstable in cases of 
disturbance magnitude change.  
 
 
Bias Integration 

As mentioned before, the configuration in (a) of Fig. 8 
cannot handle a constant bias.  Yoon, et. al. introduced a 
technique called bias integration to modify the LMS 
algorithm to address constant bias for a Single Input Single 
Output (SISO) system [11].  In this study, the bias 
integration is extended for a multichannel case.  
 
Following the bias integration method for the SISO case, 
each weight vector )(nkjw  of length L is augmented by a 
bias weight kjbw , which is a constant scalar, to obtain an 
L+1 length vector )(~ nwkj  as follows: 
 

[ ]1( ) ( ) ( )
T

kj kj kjL kjbn w n w n w=w  (18) 
 
The reference signal and filtered reference signal vectors are 
similarly augmented by bias terms: 
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where jbr  is a constant and jkmbx  is given as 
 

)()()( zrzSzx jbmkjkmb = .      (21) 
 

Similarly, jbx'  is the filtered jbr  defined as follows: 
 

( )
' ( ) ( )

1 ( )jb jbq

C z
x z r z

z C z−
=

+
        (22) 

 
At steady state, jbx' is jbr  multiplied by the DC gain of the 
secondary path transfer function and the adjustment of the 
bias weight by the secondary path DC gain described in 
Yoon, et. al., [11], is no longer necessary. 

 
Now the output of the filter is given as: 
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and the weight update can be written as follows: 
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The bias weight update can be written in terms of the sum of 
the bias weights as 
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and the sum of bias terms over j can be redefined as:  
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If the same constant is used for all reference signals, i.e., 

)()( nrnr jbb = , then Eqs. (23) and (25) can be reduced to the 
following formulae: 
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 )(')(')()1( nJxnenwnw bkkbkb α+=+           (28) 

 
where )(' nx b  is the filtered )(nrb  obtained by Eq. (22). 
Simulation results using this method are presented in 
Section 5.  The following two sections describe components 
in the experimental testbed. 

3. TURBULENCE SIMULATOR 
Air turbulence arises from the heating and cooling of the 
Earth’s surface and causes changes in the index of refraction 
of the air.  These changes alter the path of light propagating 
through the atmosphere.  Atmospheric turbulence in a 
vertical path has been simulated successfully in adaptive 
optics for many years using the Kolmogorov turbulence 
theory.  This theory is based on the assumptions that small 
scale turbulent motions are statistically homogeneous, 
isotropic, and independent of large-scale structure [14], 
[15].  Statistical variations of the atmosphere’s index of 
refraction can then be described mathematically.  Popular 
systems for simulating turbulence include rotating phase 
wheels imprinted with Kolmogorov atmospheric statistics 
[16], as well as liquid crystal spatial light modulators [17], 
[18]. 

Liquid Crystal (LC) Spatial Light Modulator (SLM) 

The NPS is using LC SLMs from Holoeye with software 
developed by the Naval Research Laboratory in 
Albuquerque, NM.  The Holoeye SLM is a π phase change 
device that can be modified to 2π or higher by Fourier 
filtering to choose the appropriate diffractive order to 
propagate through the system.  Both NPS and NRL are 
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using the LC2002, shown in Figure 9 on the left and 
mounted on the NPS optical table on the right.  
Development of a turbulence simulator using one SLM is 
described by Wilcox, et al. in a recent paper [19]. 

The NRL-developed software allows the user to specify 
telescope and site parameters such as telescope diameter, D, 
and the atmospheric coherence length, r0.  Turbulence 
generation can be performed with either the Zernike 
polynomial expansion or the Karhunen-Loève polynomial 
expansion.  Statistical calculations of Zernike-Kolmogorov 
residual errors from Fried [20] and Noll [21] are used to 
determine the Zernike coefficients for generating phase 
screens.  The Karhunen-Loève (K-L) modes are a linear 
combination of Zernike modes and are useful in describing 
propagation through a random medium such as the 
atmosphere.   

  
Figure 9 – Holoeye SLM, LC2002 

Once site parameters, a mode set, and any initial calibration 
aberrations are selected, the controller generates a user-
specified number of phase screens which are splined 
together to provide continuous transition between each 
instance of turbulence.  This splining technique is described 
by Wilcox in [19].  The smoothed turbulence profile is then 
applied to the SLM for atmospheric simulation. 

Thick Aberrator Simulation 

In vertical turbulence, it is often assumed that the 
atmosphere is composed of several thin layers at various 
distances from the telescope.  These distances can be 
measured.  Ideally, each of these layers would be conjugate 
to a correction system, though hardware, financial, and other 
technical concerns make multi-conjugate AO systems 
difficult to implement.  However, in horizontal atmosphere 
which cannot be described or measured in the same way as 
vertical atmosphere, the locations of multiple “layers” are 
difficult to determine.  A thick aberrator to approximate the 
effects of horizontal turbulence will be simulated in the 
laboratory using two SLMs placed in the optical path.  As 
only one WFS-DM combination is available, only one SLM 
(seen second in the optical path) will be conjugate to the 
WFS-DM pupil plane and its effect expressly corrected for.  
However, the effect of the other SLM (seen first in the 
optical path) will be to create additional turbulence that 
propagates through the system and helps to simulate the 
thick turbulence layer.  At this time, no accounting for 
branch points in the atmospheric phase profile is included.  
The next step in the experiment will be to move the second 
SLM to various distances out of the pupil to determine how 

well the adaptive optics system performs.  This will lend 
insight into thick aberrator performance that will be useful 
in future experiments, when it is desirable to correct for 
other pupil planes whose locations will not be as well 
known as the current system pupil.  This will provide 
information on the best control techniques to use in such an 
environment.  Experiments in a vertical propagation path 
with the DM out of pupil have been performed at the 
Starfire Optical Range [22].   

4. LABORATORY TESTBED 
The NPS has built an adaptive optics system to be 
incorporated in the future with the existing High Energy 
Laser (HEL) testbed currently undergoing research on jitter 
control for shipboard applications.  For initial experiments, 
it is assumed that tip and tilt will be removed by the jitter 
control part of the testbed.  As such, the AO system will 
only correct for the higher order aberrations due to 
atmospheric turbulence.  The complete AO system is shown 
in Figure 10.  The beam paths and primary components are 
described below. 

 
Figure 10 – NPS AO system 

Beam Paths 

A microscope objective and lens expand and collimate the 
sources laser beam, which is then split by a beamsplitter to 
follow two paths.  One beam travels through the aberrator 
provided by the two SLMs and accompanying optics, as 
shown in Figure 11.  As described in Section 3, the SLM is 
an LC2002 from Holoeye Corp.  The device is capable of 
operating at up to 30 Hz.  The aberrator path consists of the 
first SLM immediately followed by an afocal lens system 
which relays the SLM profile to a pupil plane (which will 
not be specifically corrected for without a second DM-WFS 
combination).  An iris is used to Fourier filter the device and 
allow one of the first diffractive orders to pass through, 
achieving a 2π or full wave range of aberration.  The beam 
then passes through the second SLM, immediately followed 
by another Fourier filter and an afocal system that relays the 
SLM profile to the tip/tilt mirror (currently being used as a 
simple flat).  This mirror is conjugate to the DM and SH 
WFS. 
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Figure 11 – Aberrator beam path 

The second beam passing through the first beamsplitter 
serves as a reference that can take two additional paths.  The 
first is a pure reference which bypasses the DM and is 
relayed to the SH WFS.  This reference is what will be used 
to drive the control system.  The second path, while still 
bypassing the aberrator, is relayed to the DM before 
reaching the SH WFS, and will be referred to as the “DM 
path.”  This path is used to generate the poke matrix or 
influence function of the DM.  While the beam in this path 
is “unaberrated” since it does not travel through the 
aberrator path, it will include aberrations from the surface of 
the DM itself as well as any introduced by the additional 
optical surfaces.  Alternatively, an unaberrated DM beam 
can be formed by using the aberrator path while placing no 
aberrations on the SLM devices.  However, this path 
contains more optical surfaces which can introduce 
additional aberrations.  The reference and DM beam paths 
are shown in Figure 12 and Figure 13, respectively. 

 
Figure 12 – Reference path 

 
Figure 13 – DM path (unaberrated) 

 
Primary Optical Table Components 

The laser used is a CVI Melles Griot HeNe Class II laser 
with output power of 0.5 mW cw, operating at a wavelength 
of 633 nm.  The deformable mirror is a 59-channel Flexible 
Optical BV (OKO) Micromachined Membrane Deformable 
Mirror (MMDM).  The membrane mirror is mounted across 
a two-dimensional array of electrodes which change the 
mirror’s shape according to the control voltages applied 
[23].  The actuator geometry is shown in Figure 14.  The 
control signals, c, calculated by the control law fall between 
+/-1 and are then translated into 8-bit values between 0 and 
255 to be applied as voltages to the mirror.  The mirror 
surface deflection depends linearly on the square of the 
applied voltage.  The relationship between control signals 
and voltage commands is as follows: 

 ( )( )1/ 20.5 1 (255)MMDM = +V c  (29) 

where c is the vector of calculated control signals and V is 
the vector of voltage commands sent to the mirror. 
 

 
Figure 14 – Actuator geometry, 59-ch OKO MMDM22 

The wavefront sensor is a Shack-Hartmann array of 127 
lenslets arranged in a hexagonal pattern.  The array is 
attached directly to a Roper Scientific Cascade 128+ camera 
with a resolution of 128 x 128 pixels and a 16-bit frame rate 
of 500 fps.  The science camera is an IDS uEye-2210SE 
CCD camera with a resolution of 640 x 480 pixels and an 8-
bit frame rate of 75 fps.  It is used to capture the point 
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spread functions (PSFs) of the corrected and uncorrected 
spots. 

Two computer controllers are used for the full experimental 
system.  All elements of the adaptive optics control system 
itself are driven by one computer, while the aberrator 
elements (SLMs) and uEye science camera are controlled 
separately.  Simulations are run in Matlab’s Simulink 
environment, while the optical table elements are currently 
driven using Matlab only.  Future work will include 
transitioning AO table control to Simulink as well. 

The SLMs are controlled using NRL software developed as 
a Matlab graphical user interface (GUI), described in more 
detail in Section 3.  Figure 15 shows the control monitors.  
Each SLM is currently run from a separate GUI.  The top 
two monitors show the phase screens applied to each SLM.  
The bottom left screen shows the two GUIs, and the bottom 
right screen displays the uEye science camera image. 

 
Figure 15 – SLM and science camera control screens 

5. SIMULATION 
In this section, adaptive control algorithms to be applied in 
the AO testbed described in the previous section are 
investigated by numerical simulations performed in the 
MATLAB/Simulink environment.  Figure 16 shows the 
implementation of the adaptive and classical loops with a 
more detailed breakdown of the secondary path.  

 
Figure 16 – Simulation diagram showing breakdown of 

secondary path and location of disturbance injection 

The poke matrix used in simulation was generated from the 
new testbed using the 59-channel OKO MMDM described 
in the previous section.  Its dimensions are 224 x 59, as only 
112 of the 127 SH WFS lenslets are seen by the WFS 
camera.  The simulation model is constructed entirely in 
discrete-time with a sample frequency of 100 Hz.  The delay 
in the system, q, is set to 1. 

The disturbance is injected in sensor space (after the poke 
matrix) as that is where its effect is seen in a real system.  
The disturbance is a combination of three sinusoids and a 
band-limited white noise with bias. The power of the white 
noise is 1.0E-10 and the bias is set to 0.2.  The frequencies 
of the disturbance are selected so that their periods are not 
related, and that they are well within the frequency range 
where the secondary path has sufficient gain.  The 
disturbance applied to each sensor output is identical.   

Controller Design 

The classical control loop has a proportional and integral 
(PI) controller given as follows. 

p
i K

z
zKzC +

−
=

1
)(                             (30) 

The integral gain, Ki, and proportional gain, Kp, are 
designed to meet reasonable specifications of the PI control 
loop.  Their values are 0.315 and 0.135, respectively, and 
the -3dB bandwidth of the closed loop transfer function of 
this controller is about 5.4 Hz.  The rise time is 0.06 sec. 
  
The adaptive filter used here is a normalized adaptive filter 
described in Section 2 with the bias integration.  It is applied 
in parallel with the PI controller loop in the (a) 
configuration shown in Figure 8.  The 59-channel error 
observed in actuator space and 59-channel reference signal 
generated from actuator space error are used for the adaptive 
filter.  
 

Simulation Results 

The disturbance frequencies are 12.5 Hz, 8.2 Hz, and 1.0 Hz, 
with phases chosen randomly as 2.98 rad, 1.37 rad, and 0 
rad, respectively.  The power of the band-limited white 
noise is 1.0-10 and a constant bias of 0.2 is applied to all 
sensor space channels.  A gain of 10-4/60 was applied to the 
overall disturbance for scaling of the error level.  The 
frequency spectrum of the disturbance is shown in Figure 17. 

Figure 18 shows the steady state actuator error when only 
the PI control is applied.  Steady state data is obtained from 
10 sec to 20 sec where the adaptive filter is very well 
converged.  All channels are plotted.  It can be seen that PI 
controller provides some attenuation of the error up to 10 
Hz, but fails to eliminate the deterministic periodic 
components.  Figure 19 shows the frequency spectrum of 
the actuator space error with the adaptive filter applied.   
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Figure 17 – Disturbance frequency spectra of all 

channels in actuator space 
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Figure 18 –Frequency spectra of actuator space error in 
all channels with PI control and without adaptive filter 
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Figure 19 – Frequency spectra of actuator space error in 

all channels with normalized adaptive filter with bias 
integration 

 
The number of weights for each adaptive filter is 16, 
including one bias weight.  The adaptation rate and bias 
constant are 0.02 and 0.2, respectively.  As can be seen, the 
three deterministic frequency components are completely 
eliminated.  A slight error increase above 15 Hz indicates 
that the feedback adaptive controller is still subject to the 
waterbed effect.  Figure 20 shows the convergence of all 
actuator space errors in linear scale.  Figure 21 is a log scale 
plot to show the Root Mean Square (RMS) of the actuator 
space error computed over all channels and divided by the 
RMS of the disturbance, which is the square root of the sum 
of the squares over all channels averaged for 20 sec.  
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Figure 20 – Convergence of errors in actuator space with 

normalized adaptive filter with bias integration 
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Figure 21 – Convergence of normalized root mean 
square error of all channels in actuator space with 

normalized adaptive filter with bias integration 

Figure 22 shows the 15 filter weights of Channel 1 as an 
example of the convergence behavior of the weights.  Figure 
23 shows the bias weights of all channels.  The appropriate 
number of weights depends on the disturbance 
characteristics; in this simulation, 14-16 weights produced 
good convergence with stable adaptation rates.  Simulated 
disturbances more representative of an adaptive optics 
scenario can be found in [24] and [25], and a disturbance 
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that closely resembles the disturbance profile expected in 
the actual environment will be tested in the future. 
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Figure 22 – Example of weight convergence excluding 

bias weight 
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Figure 23 – Convergence of bias weights for all channels 

To illustrate the benefit of bias integration, simulation of an 
adaptive filter without bias integration was conducted.  The 
convergence of actuator space error is shown in Figure 24. 
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Figure 24 – Convergence of normalized root mean 
square error of all channels in actuator space with 

adaptive control without bias integration 

The convergence of the weights and the frequency spectra 
of the error at steady state are shown in Figures 25 and 26, 
respectively.  As can be seen, the weights oscillate at steady 
state.  While the periodic component peaks are attenuated, 
overall error is increased. 
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Figure 25 – Convergence of one set of weights without 

bias integration 
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Figure 26 – Frequency spectra of actuator space error in 

all channels with normalized actuator space adaptive 
filter without bias integration 

 

6. CONCLUSIONS 
This paper has described a newly developed laboratory 
testbed to investigate advanced beam control methods for 
adaptive optics in the presence of a thick aberrator for a 
maritime environment.  Simulation has been conducted on 
the normalized, actuator space, multichannel LMS adaptive 
filter with bias integration.  The results demonstrate the 
effectiveness of the method in the presence of a bias 
component in the disturbance.  Sensor space error LMS was 
also performed for comparison, and it verified that although 
it uses more error information than actuator space LMS, it 
does not produce better results.  This was expected because 
the actuators can only affect a subspace of the sensor space, 
and minimizing sensor space error in the square error sense 
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is equivalent to eliminating all errors in actuator space.  It 
was also found that sensor space LMS has slower 
convergence.   
 
The actuator space LMS method employed here uses the 
errors and references of all channels in updating the weight 
vector for each channel.  The decoupled actuator space LMS 
method requires only one error and reference for updating a 
weight vector for one channel, and computation can be 
reduced.  Simulations were performed, and the results show 
that the decoupled LMS has slightly faster convergence.  
However, it may be more practical to use the full 
multichannel LMS in a situation where the poke matrix 
estimate is not accurate.  In such a case, the effect of the 
control action of one actuator is no longer contained in one 
channel but spread in other channels, and full channel LMS 
is expected to be more robust. 
 
Future work will include incorporating DM and WFS 
camera code into the Simulink model to drive the 
experimental system from Simulink. Additionally, the 
adaptive algorithms will be compared in the presence of a 
thick aberrator provided by the two-SLM system and while 
moving the second SLM in and out of pupil as described in 
Section 3.  Comparisons will be made both in simulation 
and experiment to the performance of UCLA’s multichannel 
lattice filter. In addition, the LMS algorithm will be 
compared to the Recursive Least Squares (RLS) algorithm.  
RLS is similar to LMS, but includes past data in the cost 
function by introducing a forgetting factor, which weights 
the most recent data the most heavily.  This method 
converges faster than the LMS method and leads to smaller 
steady state error, but is more computationally intensive 
[10]. 
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