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This paper presents the recent implementation of pointing and vibration isolation 
techniques on hexapods at the Spacecraft Research and Design Center (SRDC) 
of Naval Postgraduate School (NPS).   The center has two hexapod platforms: 
Ultra Quiet Platform (UQP) and Precision Pointing Hexapod (PPH).  For 
vibration isolation, the Multiple Error Least Mean Square (LMS) Algorithm, the 
Clear Box Algorithm, and the Adaptive Disturbance Canceller have been 
implemented on either or both platforms and several enhancements have been 
made to various versions of the Clear Box Algorithm.  All algorithms –
including the Multiple Error LMS Algorithm, the Time Domain Clear Box 
Sin/Cosine Algorithm, the Time Domain Clear Box Adaptive Basis Algorithm, 
the Frequency Domain Clear Box Algorithm, and Adaptive Disturbance 
Canceller algorithm – achieved under various situations the performance as 
good as nearly two orders of magnitude on the reduction of narrowband 
vibrations. The theories of these vibration isolation algorithms and a simple yet 
effective compensator for the hexapod pointing are presented with experimental 
results.  The advantages, the disadvantages, and the conditions under which each 
vibration isolation algorithm may be best applied were also given.

1.  INTRODUCTION

Many future imaging spacecraft demand high pointing accuracy and low jitter requirement for the optical 
payload.  It has become a more and more challenging problem on future space missions as the performance 
requirements of low vibration for the payloads keeps raising while the vibration sources on the spacecraft 
are increasing due to larger and larger flexible structures.  Examples of such devices as the vibration 
sources include cryo-coolers, fluid pumps and other mechanical devices, in addition to reaction wheels and 
solar array drives.  The need to develop improved techniques for vibration isolation has been recognized for 
more than a decade by several organizations such as NASA and USAF.  These organizations initiated 
several research programs in this area to develop improved techniques and validate them by ground and in-
orbit experiments.

While passive isolation presents a reliable, low cost solution that is effective for attenuating broadband high 
frequency vibrations, it is in general not suited for low frequency vibration isolation since the resulting 
mechanism is usually too soft to withstand the launch environment.  Since a spacecraft has low frequency 
vibrations due to the excitation of flexible structures and the rotating devices, such as solar array drives, 
cryo-pumps, and reaction wheels, active techniques for low frequency vibration isolation is a desirable 
approach.
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Active vibration isolation allows significant performance enhancements over passive methods, but requires 
sensors, actuators, and processors, which must be reliable and efficient in mass and power consumption.  
However, with the development of smart sensors and actuators and the availability of powerful 
microprocessors, active vibration is becoming an attractive choice for vibration isolation. Active Control 
techniques for rejection of disturbances are numerous and include classical feedback, modern feedback, 
disturbance accommodating control, disturbance observers, repetitive control, adaptive control, adaptive 
inverse control, adaptive feed forward control, and neural networks [1].  In most cases, narrowband 
vibrations (periodic disturbances) are most effectively controlled through the use of feed forward 
techniques.

A widely used adaptive feed forward method for noise and vibration control is the Filtered-x LMS 
algorithm [2], or a Multi-Input Multi-Output (MIMO) implementation of it called the Multiple Error LMS 
algorithm [3].   A drawback of these methods is that they require a separately measured disturbance-
correlated reference signal, which is adaptively filtered to form the control signal.  LMS-derived methods 
also require prior knowledge of the system dynamics, which may vary with time. An algorithm named 
Adaptive Disturbance Canceller which is computationally efficient works similarly in suppressing static 
disturbance frequencies.  This technique, however, possess the same disadvantage of needing a priori 
knowledge of the fixed frequencies.  It also requires a disturbance measuring devices and an additional 
frequency identification algorithm if they vary during the entire process effectively, and therefore its 
computational advantage is partially or completely offset.  A new technique that addresses these issues, is 
called the Clear Box Algorithm and approaches the control problem from a system identification 
perspective [4,5].  Using only knowledge of the actuator inputs and disturbance-corrupted sensor outputs, it 
allows the identification of both the system dynamics and the disturbance frequencies, and then uses the 
information to cancel the disturbance. Therefore this technique has the advantage that it does not need a 
disturbance-correlated signal.

At the Spacecraft Research and Design Center (SRDC) of Naval Postgraduate School, active vibration 
isolation by using smart struts is an active area of research.  For the problems of precision payload pointing, 
tracking and vibration isolation, a hexapod platform with advanced active control is a promising device.
Our center has two hexapod platforms: Ultra Quiet Platform (UQP) and Precision Positioning Hexapod 
(PPH).  We first started the research on vibration isolation using UQP since this platform, having 
piezoelectric actuators, was designed explicit for such purpose only.  The second platform at the center, 
PPH, is built with voice coil actuators and significantly larger actuation range; therefore it is equipped with 
the additional capability of payload pointing.  Our research emphasis has since been placed more on the 
technology of pointing with simultaneous vibration isolation.  This paper presents all our center’s analytical 
and experimental efforts to meet requirement of fine pointing in the presence of vibration disturbance using 
hexapod platforms. Experimental results of pointing and vibration isolation are presented along with the 
assessment to the advantages, the disadvantages, and the conditions under which each vibration isolation 
algorithm can be best applied.

2.  EXPERIMENTAL PLATFORMS 
 
2.1 Ultra Quiet Platform (UQP)

The Ultra Quiet Platform as shown in Figure 1, is used for testing control algorithms for the vibration 
isolation of an imaging payload from spacecraft.  It is configured similar to a “cubic” Stewart Platform 
where the struts are arranged as if they were on the edges of a cube, providing three orthogonal pairs of 
actuators.

In such arrangements, control in six degrees of freedom is possible using linear actuators and the coupling 
between actuators is minimized.  The UQP is mounted on a spacecraft mockup, to which is mounted the
disturbance source. The entire experiment sits on sixteen rubber feet attached to a 3800 lb RS4000 Optical
Table (Newport Corporation) which uses four I-2000 Series Pneumatic Isolators (Newport Corporation) to



Figure 1  Ultra Quiet Platform (UQP) and Satellite Bus Mockup

help further isolate the experiment from floor vibration.

Each strut consists of a piezoceramic stack actuator (PZT) and a geophone sensor.  The PZT converts 
control signal voltages to physical movement of the strut.  The maximum displacement of the actuator is 50 

mµ , which is sufficient for vibration applications, but not for platform pointing  or steering.  The GS-11D 

Rotating Coil Geophone sensors (Geo Space) consists of wire coils supported by soft springs under the 
influence of a magnetic field, which provides a signal proportional to velocity. The source of disturbance 
for the disturbance rejection experiment, an AST-1B-4 Bass Shaker (Aura Systems) delivers peak force of 
89 N whose resonance frequency is around 40 Hz.

2.2 Precision Pointing Hexapod (PPH)

This experimental platform is used for testing control algorithms for both vibration isolation of an imaging 
payload and fine steering. The Precision Pointing Hexapod, as shown in Figure 2, is based on an 
arrangement of six self-supporting electromagnetic voice coil actuators with in-line accelerometers that 
could enable control of higher vibration. Lower frequency steering and vibration isolation is provided by 
the use of laser/photo-diode based 2-axis position detecting system and eddy current position sensors.  The 
system is capable of delivering significant range of motion in all 6 degrees of rigid body motion.  It delivers 
over 5.7 mm of axial/position travel, 20 mm of lateral motion, 2.5 degree of tilt motion and 10 degree of 
twist.

Figure 2 Precision Pointing Hexapod (PPH)



3.  CONTROL ALGORITHMS

The current focus of the active vibration isolation for the spacecraft at the SRDC of NPS is the rejection of 
narrowband periodic disturbances.  Adaptive feedforward algorithms, such as the widely used Multiple 
Error Least Mean Square Algorithm, the fairly recent Clear Box Algorithm, and the computationally 
efficient Adaptive Disturbance Canceller, can be used to cancel such disturbances more effectively than the 
traditional feedback control methods. These algorithms with some enhancement were implemented in full 
MIMO manner due to the nature of our experimental platforms.  In this section the theories of these
algorithms are outlined and the foundation of the two enhancement made to the Clear Box Algorithm are 
also laid out.

3.1 Multiple Error Least Mean Square (LMS) Algorithm

The Least Mean Square (LMS) algorithm uses an nth order digital FIR (Finite Impulse Response) filter to 
generate a feed forward control signal y(k) and minimize the mean square error of, ε(k), which represents 
the difference between y(k) and the disturbance signal d(k).  The algorithm requires a “reference signal” 
x(k)  that is correlated with the disturbance signal d(k) in order for the controller to perform well. The LMS 
algorithm acts to minimize ε(k) by directing the filter coefficients towards the minimum point of a 
(quadratic) performance surface of ε(k).

The block diagram of Multiple Error LMS algorithm is shown in Figure 3. We assume that there are M 
actuators and L sensors. There is a reference signal x(k) which passes through a “primary plant” (P1) before 
being sensed at the system output as d(k).  The disturbance at the lth sensor is represented by dl(k).
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Figure 3 Multiple Error LMS Algorithm

The plant model used to filter the reference signal is a J th order Finite Impulse Response (FIR) filter, C,
whose coefficients clmj indicate the jth coefficient (j=1, …, J) for the filter that models the dynamics 
between the mth actuator and the l th sensor.  The resulting filtered signal, r(k), includes L×M elements 
similarly indicated by rlm(k).  The M control signals in g(k) are generated by filtering the reference signal 
with an Ith  order FIR filter W whose coefficients are wmi.  Finally, the error signal at each of the L sensors 
is indicated by εl(k), an expression for which is
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As long as each dl(k) is partially correlated with x(k) it is possible to reduce the error at each sensor through 
the proper choice of the coefficients wmi.  By defining the total error as
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it is clear that J is a quadratic function of each of the coefficients wmi miw , indicating that gradient descent 

methods allow convergence to the global minimum of J.  The differentiation of J with respect to one 
coefficient is
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Differentiating Eq. (1) with respect to wmi we obtain
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The above signal is the same as that obtained by filtering the reference signal with the FIR filter, C, but 
delayed by i sample times. Denoting it (this filtered and delayed reference signal) by rlm(k − i), we have
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Adjusting each filter coefficient in w by the negative of the gradient expression in Eq. (3), and using the 
expression in Eq. (5), we obtain
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where µ is the adaptation rate.

Note that there is the assumption of time invariance in the wmi filter coefficients and it is equivalent, in 
practice, to assuming that the filter coefficients change only slowly compared to the timescale of the 
response of the system to be controlled.

3.2 Time Domain Clear Box Algorithm

As mentioned earlier, two drawbacks of the Multiple Error LMS algorithm are the need of a disturbance 
correlated signal and the prior knowledge of the system to perform the disturbance rejection. The Clear Box 
Algorithm addresses both issues with the capability of complete identification of both the system and the 
unknown periodic disturbance, and then uses the obtained information to form the adaptive feedforward 
disturbance cancellation signal. For the development of the Clear Box Algorithm consider the following 
system

( 1) ( ) ( ) ( )

( ) ( )
dx k Ax k Bu k B d k

y k Cx k

+ = + + =
(7) 

 



where there are m inputs, q outputs, and n states.  Thus x(k) is an n×1 state vector, u(k) is an m×1 input 
vector, and y(k) is a q×1 output vector.  Similarly the system A, B, and C matrices have dimensions n×n,
n×m, and q×n, respectively.  The system is represented in Figure 4.  It is assumed that nothing is known 
except for the recorded system input u(k), the disturbance-corrupted output data measurements y(k), an 
upper bound on the true system order, n, and an upper bound on the number of frequencies, f, in the 
disturbance, d(k). 
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Figure 4 System Representation

By a process outlined in [1], the control (or excitation) input u(k) and disturbance-corrupted output y(k) 
satisfy a pth order input-output model,
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as long as p is chosen to be sufficiently large such that
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where the 1 accounts for a non-zero bias in the disturbance (if present).  Notice that in this model the 
disturbance input d(k) does not appear explicitly although it contributes to the data.  Its information is 
completely absorbed in the coefficients α and β, which are referred to here as "disturbance-corrupted" 
coefficients.

Disturbance Identification through Modal Decomposition

To facilitate the removal of the disturbance modes it is convenient to convert the ARX (Auto-Regressive 
with eXogenous Input) model to an equivalent state space observable canonical form
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Conversion of this model to modal form yields the state space equations
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where Λ, Γ, and Ω are formed via similarity transformation;

1 1, ,p p pT A T T B C T− −Λ = Γ = Ω = (13)

Typically, if p is chosen large enough, the damping ratios of the disturbance modes will be at least one or 
two orders of magnitude smaller than those of the noise modes or true system modes, and thus (the 
disturbance modes) can be easily identified.  The frequencies are identified by monitoring the root of the 
polynomial and the accuracy of the identified frequency improves as p increases.  Once the disturbance 
modes have been identified in the modal state space model, they can be selectively removed by eliminating 
the corresponding rows and columns from Λ, Γ, and Ω.  The “disturbance-free” model is then converted to 

an equivalent ARX model with coefficients 1 2, , , pα α α  K  and 1 2, , , pβ β β  K .  Thus the disturbance-

corrupted output can be expressed as
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where  the right-hand side of Eq. (14)  is driven by disturbance corrupted outputs. The disturbance effect, 
η(k), can be calculated in real time by re-arranging Eq. (14) as
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At this point the disturbance-free system model and the disturbance effect are known and from Eq. (15), 
(setting all output y(k) to zero,) the feedforward control uf(k), that cancels steady-state disturbances satisfies

1 2( 1) ( 2) ( ) ( )f f p fu k u k u k p kβ β β η− + − + + − = −K (16)

Sine/Cosine Method

The Clear Box Algorithm takes advantage of the knowledge that the control signal, uf(k), needs to be made 
up of periodic components in order to cancel periodic disturbances.  The first option for generating such a 
uf(k), as employed in [4], is to use a sine/cosine pair for each disturbance frequency.  For L identified 
disturbances, the assumed form of the control signal
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is substituted into Eq. (16)  and the resulting set of equations (linear in the coefficients ai and bi) is solved in 
real time using Recursive Least Squares (RLS), and employing a “forgetting factor” λf  to weight recent 
data more heavily.  The control signal in Eq. (17) is thus a combination of sine and cosine functions, whose 
L frequencies are estimated using methods outlined in the previous section.

Adaptive Basis Method

An alternative [6,7] to using the sine and cosine functions as the bases for synthesizing the disturbance 
rejection signal, uf(k),  for the Clear Box Algorithm, is to use the  N-sample shifted versions of the 
disturbance effect signal, η(k)..

For this “Adaptive Basis Method”, the control signal is formed from η(k) as follows

1 1 2 2( ) ( ) ( ) ( )f N Nu k k k kψ η ψ η ψ η= − ∆ + − ∆ + + − ∆K (18)

where N ≥ 2f + 1. The ∆i values (i = 1, ... N) are the number of samples that the disturbance effect would 
shifted to generate each of the N basis functions that are linearly combined to form the control signal.  Each 
∆i value is pre-selected by the operator, and the guidelines below should be followed.
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The first guideline prevents any problems with causality by using the disturbance effect that is delayed by 
at least one time sample.  The second ensures that two functions do not have the same time shift (such a 
pair would be identical functions).  The third introduces a random characteristic to the time shifting, and 
prevents linear dependence of the basis functions for any given disturbance frequency. The control 
coefficients in Eq.(18), ψi, where i = 1, ... N, are recursively estimated in the same manner as with the 
Sine/Cosine Method.
There are two basic advantages associated with the adaptive basis approach.  First, it eliminates the need to 
estimate the disturbance frequencies.  Second, since the disturbance effect signal η(k) is calculated in real 
time, it contains the exact frequency content of the actual disturbances.  Any change in the disturbance 
frequencies immediately appear in the disturbance effect signal, making the adaptive basis approach 
capable of handling time-varying disturbance frequencies.

3.3 Frequency Domain Clear Box Algorithm

The Frequency Domain Clear Box Algorithm [8] parallels the development of its time domain counterpart.  
It is the analog with two enhancements.  First, a Phase Cancellation Repetitive Control Algorithm [9] is 
added to the process of generating feedforward cancellation signal.  Zero tracking error, i.e. output error 
suppressed down to practically the background noise level, is produced through the integration action along 
repetitions. Second, when the situation of limited control authority is encountered, the yes-or-no decision 
algorithm on deciding which disturbance frequencies to control is replaced by a quadratic programming 
algorithm, which allows partial control of certain disturbance frequencies. Therefore actuator saturation is 



avoided and the overall performance is improved.  Computational efficiency is ensured by the application 
of FFT for this algorithm, but there are added difficulties in dealing with the noisy data, the leakage effect, 
and the synchronization issue of online system identification in the presence of periodic disturbances. The 
following two sections summarize the theoretical background of the enhancements that were made.

Phase Cancellation Repetitive Control 

Consider the input-output relationship for the following general time invariant MIMO system:

( 1) ( ) ( ) ( )

( ) ( )

x k Ax k Bu k w k

y k Cx k

+ = + + = (20)

where x is the state vector, u u is the batch mode repetitive control input vector adding to feedback control 
command to correct for repeating errors, y is the output vector, and w w includes repetitive disturbances as 
well as the initial command to the feedback controller, which are both of the same period, p. The system is 
assumed asymptotically stable and all eigenvalues of A A are less than one. 

Take z-transform of Eqs. (20) and after combining terms, we obtain
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with I being the identity matrix with matching dimensions and U(z) and W(z) being the z-transforms of u(k) 
and w(k), respectively.
The z-transform version of the repetitive control law is

1 1( ) ( ) ( ) ( )j j jU z U z L z E z− −= +  (23)

where 

1 1( ) ( ) ( )j d jE z Y z Y z− −= − (24)

with j representing the repetition number (repetition 0 referring to the initial repetition with no modification 
to the feedback command), and L(z) and Yd(z) representing the z-transforms of the time-domain learning 
coefficients and the desired output, respectively.

Applying Eqs. (21) and (23), after manipulations, one obtains

1( ) [ ( ) ( )] ( ) ( ) ( ) ( )j c j c dY z I L z G z Y z L z G z Y z−= − + (25)

and
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which relate the output and error profiles from one repetition to the next.  Using recursive substitution in 
Eqs. (25) and (26)  gives
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where the subscript 0 indicates initial trail repetition.

It is then recognized that the condition needed for convergence to zero error is

1,   1,2,...,i i qλ < =  (29)

where λi’s are the eigenvalues of I – L(z)Gc(z) and q is the number of outputs. Considering steady-state 
frequency response, setting z = e jωT where T is the sample time, the learning therefore produces monotonic 
decay of every steady-state discrete frequency components of the error.  For the case of SISO system, Eq. 
(29) reduces to

1 ( ) ( )) 1,   1,2,...,j T j T
cL e G e i qω ω− < =  (30)

This is a sufficient condition for convergence, and also a condition for good transients during the repetitive 
control process, producing monotonic convergence in steady-state response. Thus it is a performance 
condition that requires the Nyquist plot of  L(ejωT)Gc(e

jωT) to be within a unit circle centered on the real axis 
at unit positive distance.

The phase cancellation repetitive control law, for the case of SISO system, is given as
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π
, k = 0, 1, … , N–1 and ( )ki TG e ω is the frequency response of the system at the N discrete 

frequencies ωk’s.

This repetitive control law actually puts all points on the Nyquist plot of L(ejωT)Gc(e
jωT) on the real axis 

between the origin and +1. Therefore it satisfies the unit circle performance condition (30) for all N discrete 
frequencies at ωk’s.

For a MIMO system with square and diagonalizable system frequency response function at every 
frequency, the learning gain matrix is
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where V and Λφ are the eigenvector and the eigenvalue matrices of the transfer matrix Gc(e
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where ωk =
2 k

NT

π
, k=0,1,…,N–1 and i=0,1,…,q, and Gc(e

jωT) and [ ( )]kj T
i cG e ωλ  are the frequency response 

of the system and its eigenvalues at all N discrete frequencies at ωk’s.

Intelligent Error Cancellation by Quadratic Programming 

In Time Domain Clear Box Algorithms, the control computation gives full information as to how much 
control effort is required to cancel each frequency component of the error, but only yes or no decisions 
were made when full cancellation requires use of control actions that exceed the actuator limits. The 
application of quadratic programming to the worst case scenario of multiple disturbance frequencies allows 
partial cancellation that prevents actuator saturation and produces overall improvement on the tracking 
accuracy.

Consider a six-input, six-output system subject to the disturbance of five frequencies with limited control 
authority umax for each input actuator. Let dij represent the amplitude of the disturbance frequency i on 
output j. and cij be the amplitude of the input signal needed to cancel dij. The maximum possible amplitude 
of the disturbance on output j is the sum of dij over i. It occurs when all five frequency components are at 
their peak values at the same time.

Also define

id  and ic  as column vectors of dij and cij,

αi as the fraction of input (0≤αi≤1) to cancel the disturbance frequency i for all outputs,
βi as compliment of αi  so that 0≤βi =1–αi≤1, 
C, D, and β  as column matrices of ci, di, and βi,

51  and 61  as 5- and 6-dimensional column vectors with all entries equal to one,

60  as 6-dimensional column vectors with all entries equal to zero,
and

umax as the same saturation limit for all actuators.

Then the maximum disturbances vector is

1 2 3 4 5d d d d d d= + + + + (34)

The maximum magnitude for each input is 
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and the maximum remaining disturbance after this fractional cancellation is

1 2 3 4 51 2 3 4 5d d d d d d Dβ β β β β β= + + + + = . (36)

To optimize the amount of each mode to cancel, quadratic programming is used to minimize the objective 
function 

T T TJ d d D Dβ β= =  (37)



with component-by-component inequality constraints

660 1 ,   i iβ≤ ≤ ∀ , (38)
and

6 5max1 1C u Cβ− ≤ − , (39)

3.4 Adaptive Disturbance Canceller 
 
The Adaptive Disturbance Canceller (ADC) implemented for the Precision Pointing Hexapod at NPS 
follows the same approach proposed in 1998 by Bertran and Mortoro [12].  This approach states that 
assuming the plant is linear and stable and has no zeros at the frequencies of interest, it is possible to 
generate an arbitrary sinusoidal at the output of the system to cancel any sinusoidal disturbance.  Figure 5 is 
a block diagram illustrating this control approach.

Figure 5 Adaptive Disturbance Canceller

Assuming the plant H is linear, for any sinusoidal signal d[n] with frequency ω c it is possible to find a 

sinusoidal input x[n] such that [ ] ny n d= − (if H ( )cje ω ≠ 0).  This input can be written as:

[ ] cos( )c xx n X nω β= +  (40)

There exist several algorithms for finding the optimal value of x[n] to minimize the error, e[n] = y[n] + 
d[n], assuming y[n] is linear.  Using this assumption, (40) can be changed to the equivalent form:

[ ] cos( ) sin( )c cx n a n b nω ω= +  (41)

Assuming that H ( )cje ω =αejβ, with α as the magnitude and β the phase, the steady-state output y[n] can 

then be expressed as:
[ ] cos( ) sin( )c cy n a n b nα ω β α ω β= + + + (42)

Using this form the output y[n] is linear in the parameters a and b, which can be found by an adaptive 
algorithm.  The update equations given by Bertran and Montoro for these parameters are

[ 1] [ ] [ ]cos( )

[ 1] [ ] [ ]sin( )
c

c

a n a n e n n

b n b n e n n

µ ω
µ ω

+ = +
+ = +

 (43)

where µ is a learning factor to be determined.



3.5 PID Hexapod Pointing Compensator

Our first pointing controller implemented PPH is a PID controller, whose performance will be taken as the 
baseline for comparison to those of more advance pointing controller in the future. As will be presented in 
the next result section, such simple compensator can produce sufficiently good performance, which is made 
possible by a Jocobian matrix that interprets commanded position and orientation of the hexapods to 
necessary strut/actuator displacements to accomplish the task.  By the use of carefully constructed Jacobian 
matrix, the hexapod strut motions are well decoupled, and therefore can be controlled well by simple linear 
controllers.  The Jacobian matrix implemented follows that was developed by Tsai [14].  It is a small 
motion approximation, which we applied to tasks around the hexapod’s nominal neutral position such as 
tracking small straight line through origin or small circular motion about origin.

4. EXPERIMENTAL RESULTS

4.1 Vibration Isolation Test Results on the Ultra Quiet Platform

Three time-domain controllers, Multiple Error LMS Method, Clear Box Sine/Cosine Method, and Clear 
Box Adaptive Basis Method were tested for the vibration isolation of a disturbance frequency at 120 Hz on 
UQP.  The experiments demonstrate [6,7] that all three controllers work effectively reducing the sensor 
output to the level of the background noise.

Next, the three controllers were tested for a single time-varying disturbance frequency with the profile 
shown in Figure 6. 
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Figure 6  Frequency Variation Profile, Single Disturbance

With a good source of well-correlated disturbance signal x(k), the Multiple Error LMS algorithm performs 
quite well over the course of the frequency variation profile as shown in Figure 7. 
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Figure 7 Uncontrolled response and Multiple Error LMS Method Response, One Varying 
Frequency

The performance of Clear Box/Sine Cosine Method is shown in Figure 8.  This method had significant 
degradation in performance during rapid ramp-up in frequency since the frequency estimates (when 
updated through batch processing once per second) quickly become inaccurate. 
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Figure 8 Uncontrolled response and Clear Box Sine/Cosine Method response, One Varying 
Frequency

The performance of Clear Box/Adaptive Method is shown in Figure 9.  This method is able to maintain 
good performance, reducing the sensor output to the background noise level.  Therefore, this method is 
effective even if the frequency of the disturbance is varying.
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Figure 9 Uncontrolled response and Clear Box Adaptive Basis Method response, One 
Varying Frequency

Similar test cases were also run for the Frequency Domain Clear Box Algorithm implemented in batch 
mode.  Comparable good final level was achieved for the case of time-invariant, single or multiple 
disturbance frequencies. The algorithm is less computational intensive than its time domain counterparts. It 
cancels, as shown in Figure 10, just as well a disturbance with 5 frequency components, which is already 
beyond the computational capacity of the control hardware for the Time-Domain Clear Box Method. But as 
the case of Time-Domain Clear Box/ Sine Cosine Method, it was unable to adaptive quickly to variable 
frequency profile since it was batch-implemented.
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Figure 10 Uncontrolled response and MIMO controlled response of 5 disturbance 
frequencies (repetition 10)

4.2 Vibration Isolation Test Results on the Precision Pointing Hexapod

Figure 11 shows the vibration isolation test results when the Adaptive Disturbance Canceller is applied on 
the Precision Pointing Hexapod to suppress a disturbance with constant fundamental frequency at 50 Hz.  



Due to the nonlinearity in the system, such as stick friction and ball joint clearance1, three additional 
cancellers with individual adaptation process to those of the first three harmonics (100, 150, and 200 Hz) 
were also implemented.  All four disturbance frequencies were practically suppressed to the ambient noise 
level.  The adaptive disturbance cancellers are applied to each of the six struts of the hexapod in an 
identically, i.e. decentralized, manner.

Figure 13 Uncontrolled response and Adaptive Disturbance Canceller response, One Static 
Fundamental Frequency at 50 Hz

4.3 Pointing Test Results on the Precision Pointing Hexapod

The hexapod tracking performance of rotating about either x or y axis, i.e. straight line tracking along y or 
x axis, is illustrated in Figure 12.  The gains of the PID controller used are Kp=2, Ki=6, and Kd=0.17.  The 
tracking errors were less than ±0.05 degree for rotations about either axis up to 1 degree, which was an 
order of magnitude improvement over the open loop case.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Rotation Angle about x−axis in degrees( )

R
ot

at
io

n 
A

ng
le

 a
bo

ut
 y

−a
xi

s 
in

 d
eg

re
es

(
)

Commanded Rotation
Actual Rotation

Figure 12 Tracking Errors Corresponding to Two Orthogonal Straight Line Trajectories 
(Rotations about x and y axes)

1 Later on this problem was essentially eliminated by replacing ball joints with flexure joints, which is what 
is used for the pointing tests.

Uncontrolled Controlled



The performance of the hexapod tracking circles with different sizes (from 0.1 degree to 1 degree) and at 
different speed (from 0.1 Hz to 2 Hz) are also tested.  Results in Figures 13 and 14 show that the circular 
tracking performance is indeed dependent on the sizes of the circle and the speed of tracking them.  In 
general, the larger the circle or the faster the speed, the larger the error. However, when the tracking speed 
is quite slow, e.g. at 0.1 Hz, the performance seems to be much less sensitive to the size of the circle.
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Figure 13 Tracking Errors Corresponding to 2.0 Hz Circular Trajectories for Various 
Radii
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5.  CONCLUSIONS

Based on the experimental results of vibration isolation on our two hexapod platforms UQP and PPH, we 
made the following conclusions.  The drawbacks of the Multiple Error LMS Algorithm are that the tuning 
of the adaptation rate is necessary to achieve optimal convergence, and that it requires one or more 
disturbance correlated signals to perform the disturbance cancellation well.  When the disturbance-
correlated signals are available, it is the preferred control algorithm due to its better computational 
efficiency. The performance from the Clear Box method, implemented in either Time-Domain or 
Frequency Domain, meets or exceeds that of Multiple Error LMS Algorithm without requiring a measured 
disturbance-correlated signal. When there are no disturbance-correlated signals available, as is the case 
with majority of the systems, the Clear Box method is the method of choice since it is capable of doing on-
line disturbance and system identification.  The Time Domain Clear Box Sine/Cosine Method is preferred 
when the disturbance frequencies are time-independent or just varying slowly, but for rapidly varying 
disturbance frequencies, the Adaptive Basis version should be used as it provides better performance.  Both 
of the time domain Clear Box versions have, however, the drawback of requiring significantly higher 
processing speed.  

Base on the experimental results on pointing and vibration isolation on PPH, PID controller with a well 
constructed decoupling matrix provides adequate performance for pointing.  A computation efficient 
Adaptive Disturbance Cancellation algorithm was tested and proved as effective as the vibration isolation 
algorithms mentioned above in suppressing constant disturbance frequencies.  This technique, however, 
possess the same disadvantage of needing a priori knowledge of the fixed frequencies.  
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