
ANGULAR RATE ESTIMATION 
FOR GYROLESS SATELLITE ATTITUDE CONTROL

Brij N. Agrawal1 and William J. Palermo2

Naval Postgraduate School
Monterey, California  

1 Professor and Director, Spacecraft Research and Design Center, Naval Postgraduate School, Monterey, CA
2 Graduate Student, Dept. of Aeronautics and Astronautics, Naval Postgraduate School, Monterey, CA

This paper presents the results of a study to 
develop and evaluate an attitude and attitude rate 
estimation technique for a multi-body spacecraft 
that includes a real time angular rate calculation 
from the system dynamic model and a Kalman 
filter estimator with attitude sensor updates 
provided by star trackers. The performances of 
this method, dynamic gyro, are compared with 
that of rate gyros and the effects of primary error 
sources in the dynamic model are analyzed.  It is 
shown that the corrections provided by a star 
tracker based Kalman filter make the system 
robust to measurement and parameter knowledge 
error sources.  This method provides an imperfect 
but operative means of estimating multi-body 
spacecraft angular rates.  This method is ideally 
suited to a spacecraft designed specifically for its 
implementation with precise internal sensors and 
mechanism to monitor spacecraft parameters and 
integrated external torque estimation modeling.

1. INTRODUCTION

In a spacecraft attitude control system with high 
pointing requirements, the attitude determination 
systems have relied primarily on rate gyros, star 
trackers, and Kalman Filter for attitude and attitude 
rate estimation.  The rate gyros have bias errors and 
star trackers have measurement gaps.  The common 
practice is that during star tracker measurement gaps, 
rate gyros are used to determine attitude and attitude 
rates.  When the star tracker measurements is taken, 
using Kalman Filter, the attitude estimation is 
corrected and rate gyros bias is updated.  However, 
rate gyros have a tendency to degrade or fail in orbit.  
As an example, gyros have degraded/failed on 
several spacecraft, such as NASA Skylab, the 
International Ultraviolet Explorer, and Hubble Space 
Telescope.  In such cases, there is a need to estimate 
angular rate in the absence of rate gyros.  For some 
spacecraft designs, rate gyros are too expensive.  
Therefore, it will be highly desirable to have gyro 
less attitude determination system.

Historically, sensitivity and bandwidth 
limitations of available star sensors have precluded 
their use as primary sensors for attitude rate 

determination.  Using the recent advancements in 
star sensor technology, Ref. 1 proposes the 
implementation of star sensor to estimate attitude and 
attitude rate.  The paper defines the requirements 
such implementation will impose on the star sensors 
and error state Kalman filter used to estimate 
spacecraft quaternion and its angular rate.   
Reference 2 presents a real-time predictive filter for 
spacecraft attitude estimation without the utilization 
of rate gyros.  The formulation uses only attitude 
sensors, such as three-axis magnetometers, sun 
sensors, and star trackers.  This technique has been 
used on the Solar Anomalous Magnetospheric 
Particle Explorer (SAMPEX) spacecraft.  Reference 
3 presents a sequential nonlinear estimator for 
satellite attitude and attitude rate estimation by 
utilizing vector observations.  This method is 
claimed to have several advantages.  First, the 
acquired vector measurements are directly processed 
to extract attitude and attitude rate information, thus 
avoiding the computation of temporal derivatives of 
these noisy measurements.  Second, no use is made 
of spacecraft dynamic model, which is frequently 
considered to be highly uncertain.  Finally, the 
algorithm directly determines attitude matrix.  
Reference 4 presents a nonlinear estimator for 
reconstructing the angular rate of a spacecraft 
without rate gyros.  The angular rate estimator 
structure is similar to a Kalman filter.  The estimated 
angular rate is propagated based on spacecraft model.  
It is assumed that the disturbance torques are smaller 
and at lower frequency in comparison to control 
torques and not included in the estimation of the 
angular rate. The angular rates are updated 
periodically using the measurements from onboard 
attitude sensors.

Another method, proposed by Aerospace, is to 
estimate spacecraft angular rate through direct 
calculation from a dynamic model of the system.  
Information from internal sensors that detect relative 
orientations and rates of momentum exchanges 
devices and appendages are used to determine 
component angular momentum and moments of 
inertia. Control torques and estimated disturbance are 
integrated to capture external dynamic effects.  The 
dynamic model continuously tracks the total 
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momentum and inertia dyadic from which the 
angular rate can be calculated.  The accuracy of the 
rate estimate is dependent on the quality of the 
dynamic model and sensor information available.  
Error sources include imperfect knowledge of the 
system and component inertia dyadic and relative 
angular position and rate data from the internal 
sensors.  Errors are also introduced in the modelling 
of external disturbances.

This paper presents the results of a study to 
develop and evaluate a attitude and attitude rate 
estimation technique for a multi-body spacecraft that 
incorporates a real time angular rate calculation from 
the system dynamic model, dynamic gyro, and a 
Kalman filter estimator with attitude sensor updates 
provided by star trackers.  The Bifocal Relay Mirror 
spacecraft, Ref. 5, is used as an example for multi-
body spacecraft to evaluate the dynamic gyro.  The 
performance of the developed gyro less attitude 
determination system is compared to a conventional 
gyro-based system that uses the same Kalman filter 
and attitude updates.  The impact of several dynamic 
model error sources on the performance of dynamic 
gyro is analyzed.

2. DYNAMICS OF BIFOCAL
RELAY MIRROR SPACECRAFT

Bifocal Relay Mirror spacecraft is composed of 
two optically coupled telescopes used to redirect the 
laser light from ground-based, aircraft-based or 
spacecraft based lasers to distant points on the earth 
or in space.  The receiver telescope captures the 
incoming energy from a laser transmitter system 
while a separate transmitter telescope directs the 
laser beam at the desired target.

The dynamic model of bifocal relay mirror 
spacecraft is shown in Fig. 1.  It consists of two 
bodies, transmit telescope and receive telescope.  
The receive telescope rotates with respect to the 
transmit telescope about a single axis.  The center of 
mass (c.m.) of the receive telescope is on the rotation 
axis.  Therefore, the c.m.of the system is fixed during 
the relative motion of the receive telescope.

The coordinate system x, y, z is fixed in the 
transmit telescope with x-axis parallel to rotation 
axis of the receive telescope, z as telescope axis and 
y is normal to x and z such that the x, y, z coordinate 
system is right handed mutually orthogonal frame.  
The origin of the coordinate system is at the c.m. of 
the transmit telescope.  Unit vectors along x, y, and z 

are kand,j,i
rrr

 respectively. The coordinate 

system x′, y′, z′, is fixed in the receive telescope with 
x′ axis as the rotation axis, parallel to x axis, z′ as 
telescope and y′ is normal of x′ and z′ such that x′, y′, 
z′ coordinate system is right handed mutually 
orthogonal frame with origin at the c.m. of the 
receive telescope.  The coordinate system x′, y′, z′

are obtained from the coordinate system x, y, z by 
rotation α about x-axis.  The equations of motion of 
the system are written in the coordinate frame x, y, z 
with the origin at the c.m. of the system. The 
spacecraft is assumed to be rigid.

Figure 1. Bifocal Relay Mirror Spacecraft       
Dynamic Model

2.1. Equations of Motion

In a general case, the rotational equation of a body 
about an arbitrary point P is given by

p p c cM H m rρ= − ×& & & (1)

Where 
Mp = total sum of external forces about P
Hp = angular momentum of the body about P

cρ  =  Vector from P to C.M. of the body

m  = mass of the body

cr&  = Velocity of center of mass of the body

If the point P is at c.m. of the body, then ρc = 0, and

M = |IH& (2)

For the bifocal relay mirror spacecraft, the point P is 
at the c.m. of the system, therefore Eq. (2) is 
applicable. The angular momentum of the spacecraft, 
HS, can be written as follows:

S rel WH H H H= + + (3)

where
HS = angular momentum of the spacecraft.
H = angular momentum of the spacecraft by 
neglecting the contribution by the relative motion of 
the receive telescope and reaction wheels with 
respect to transmit telescope 
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Hrel = angular momentum due to relative motion of 
the receive telescope
Hw = angular momentum due to relative motion of 
the reaction wheels.

The next step in the derivation is to determine 
these angular momentums. 

Inertia
Let IT be the inertia matrix of the transmit 

telescope about its c.m. in coordinate frame x, y, and 
z; IR be the inertia matrix of the receive telescope in 
the coordinate frame x, y, and z; and IS be the 
spacecraft inertia matrix about it c.m. in the 
coordinate frame x, y, and z.

Angular Velocities
The angular velocity of the transmit telescope

x

T y

z

ω
ω ω

ω

  =    
(4)

The relative angular velocity of the receive 

telescope with respect to transmit telescope relω  is 

given by

0

0
rel

α
ω

  =    

&
(5)

The angular velocity of the receive telescope, 

Rω , is

x

R T rel y

z

ω α
ω ω ω ω

ω

+  = + =    

&
(6)

Angular Momentums
The angular momentum H is given by

s TH I ω= (7)

The relative angular momentum relH  is given by

rel R relH I ω= (8)

Substituting Eqs. (7) and (8) into Eq. (3), we get 

S S T R rel wH I I Hω ω= + + (9)

Using Eq. (2), the equation of motion of the 
spacecraft is given by

|  

s I

s T T s

M H

H Hω
=

= + ×

&
& (10)

where

|s IH& =  rate of change in the inertial frame

|s TH& =  rate of change in the transmit telescope 

frame

Substituting Eq. (9) into Eq. (10), we get

[ ]
S T S T R rel W

T S T R rel W

M I I I H

I I H

ω ω ω
ω ω ω

= + + +
+ × + +

& && &
(11)

It should be noted that IS is a function of α, and 
therefore time dependent.  Equation (11) can be 
rewritten as

[ ]
[ ]

S T R rel W

T S T R rel W

d
I I H

dt
M I I H

ω ω
ω ω ω

+ + =

− × + +
(12)

The formulation of Eq. (12) is used for 
MATLAB/SIMULINK simulation. The spacecraft is 
subjected to large angle maneuvers.  Therefore 
quaternion formulation is better suited and is used.  

3. SPACECRAFT CONTROL

For the spacecraft attitude control, reaction 
wheels are used as actuators with magnetic torque 
rods to desaturate the reaction wheels. The primary 
sensors are rate gyros to determine spacecraft 
angular rates and star trackers to determine 
spacecraft attitude. The rate gyros have bias errors 
and star trackers have measurement gaps.  During the 
measurement gap for the star trackers, rate gyros are 
used to determine angular rates and angular position.  
When the star trackers measurements are taken, 
using Kalman Filter, the angular position is corrected 
and rate gyro biases are updated. During the 
simulations, disturbance torques are assumed from 
gravity gradient and earth’s magnetic field. In this 
paper we will compare the performance of rate gyros 
with dynamic gyro.

3.1. Gravity Gradient Torque

The gravity gradient torque MG is given by

13 13

23 233
0

33 33

3
xx xy sz

G xy yy yz

xz yz zz

C I I I C

M C I I I C
R

C I I I C

µ
 − −       = × − −        − −    

(13)
where
µ  =  gravitational constant
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R0 = orbit radius
Cij = elements of transformation matrix from orbit 
frame to body frame
Iij = elements of body inertia matrix

3.2. Magnetic Moment

Magnetic moment is given by

Mm = m x B (14)

Where
Mm = magnetic moment (N.m)
m  = spacecraft magnetic dipole (a.m2)
B  = earth’s magnetic field vector (N/a.m)

The earth’s magnetic field is given by

[ ]3
3( . )magK

B M R R M
R

= − (15)

where
Kmag = 7.943 x 1015 N.m2/a2

R = earth c.m. to spacecraft c.m. (m) vector
M= unit dipole vector

The earth’s magnetic field component in orbit 
coordinates is given by

3

cos  (cos   sin  sin   cos   cos  )
sin   sin   sin  

mag
xo

K i i u
B

uR

α ε ε
α ε

   
− +

= −

[ ]3

mag
YO

K
B cos cos i sin sin i cos u

R
ε ε= − −

3

2 ( )

2
mag

ZO

sin Cos Sin i sin cos i cos uK
B

cos sin sin uR

α ε ε
α ε

− + =  + 
(16)

where
=α   true anomaly of the spacecraftε   = magnetic dipole tilt from north pole

i    = orbit inclination
u  = right ascension angle of magnetic dipole with 
respect to right ascension of the orbit normal.

The earth’s magnetic field vector in body frame 
is given by

BB = BCO BO (17)

where BCO is transformation matrix from orbit frame 
to body frame.

Magnetic Disturbance Moment

The magnetic disturbance moment is given by
                    Mmd = md x BB                   (18)

where
md  = spacecraft magnetic dipole

Magnetic Control Moment

Magnetic control is used to desaturate the 
reaction wheels.  The command for magnetic dipole 
of the torque rods or coils, mc is given by

mc  =  -Kcmag (BB x h) (19)

where
h  = angular momentum of the wheel
Kcmag  = gain

3.3. Wheel Control Laws

The wheel control laws are as follows

1 1 1 4 1 1

2 2 2 4 2 2

3 3 3 4 3 3

2

2

2

W E E d E

W E E d E

W E E d E

H k q q k

H k q q k

H k q q k

ω
ω
ω

= +

= +

= +

&
&
&

(20)

where qE is quaternion error, Eω  is the error 

between commanded angular rate and measured 
angular rate, and ki and kid are the gains for the 
control.

3.4. Feed Forward control

The feed forward control torque, Mfd, is given by

[ ]
fd S T S T R rel

T S T R rel W

M I I I

I I H

ω ω ω
ω ω ω

= + +

+ × + +

& & & (21)

It should be noted that IS is time dependent.

3.5. Kalman Filter

As discussed earlier, spacecraft uses rate gyros in 
the transmit telescope to determine angular rates and 
star trackers to determine angular position.  The rate 
gyros have bias errors and star trackers have 
measurement gaps.  The common practice is that 
during measurement gaps for the star trackers, rate 
gyros are used to determine angular rates and angular 
position.  When the star tracker measurement is 
taken, using Kalman Filter, the angular position is 
corrected and rate gyro bias is updated.

The basic of discrete filter is as follows.  Let the 
system be defined by

( 1) ( 1, ) ( )

( 1, ) ( ) ( )

( ) ( ) ( ) ( )

x k k k x k

k k u k W k

z k H k x k V k

φ+ = +
+ ∆ + +
= +

(22)

Let us define co-variances as

( ) ( ) ( )

( ) ( ) ( )

T
kj

T
kj

E V k V j R k

E W k W j Q k

δ
δ

  = 
  = 

(23)
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The covariance of estimation error matrix is

( , ) ( , ) ( , )TP k k E e k k e k k  � (24)

The estimator correction is

[ ]ˆ ˆ ˆ( / ) ( / 1) ( ) ( ) ( ) ( / 1)

ˆ( / 1) ( , 1) ( 1/ 1) ( , 1) ( 1)

x k k x k k K k z k H k x k k

x k k k k x k k k k U kφ
= − + − −
− = − − − + ∆ − −

(25)
Here ˆ( / )x k k is optimal estimate of x (k) given 

observations at times up to and including k and 
ˆ( / 1)x k k −  is optimal prediction of x (k) given 

observations at times up to and including k-1.

In Kalman Filter, gain K (k) is determined to 
minimize the sum of the main diagonal of the matrix 
P (k, k).  The gain and covariance equations are 
given by

[ ]

1
( ) ( / 1) ( ) ( ) ( / 1) ( ) ( )

( / ) ( ) ( ) ( / 1)

( 1/ ) ( 1, ) ( , ) ( 1, ) ( )

T T

T

K k P k k H k H k P k k H k R k

P k k I K k H k P k k

P k k k k P k k k k Q kφ φ

− = − − + 
= − −

+ = + + +
(26)

In our system, there are six state variable, three 
attitude errors in angles with respect to inertial frame 
θE and three gyro bias errors bE.  The state vector is

1

2

3

1

2

3

E

E

E E

E E

E

E

x
b b

b

b

θ
θ
θ θ

      
= =         

(27)

It is assumed that there are constant bias errors.  
The state equation is

3 3

3 3 3 3

/
( )

/

I T
E Ex

EE x x

d dt O C
f t x

bdb dt O O

θ θ    
= =        

(28)

where ICT is transformation matrix from transmit 
telescope frame to inertial frame, or transpose of TCI.

The state transition matrix φ is

( ) 3 3

3 3 3 3

I T
f t t x k

k

x x

I C t
e

O I
φ ∆  ∆

= =   
(29)

The star trackers produce horizontal and vertical 
outputs (H,V) corresponding to the position of the 

star on the detector array.  The tracker measurements 
in a vector form is

1
m

h

S V

  =    
(30)

with normalization, the vector is

m
m

m

S
s

S
= (31)

The star in inertial space has gone through a star 
identification process and has been compensated for 
annual and vehicular aberration to yield a unit vector 
SI  in inertial frame.  Transforming it into star tracker 
frame, the predicted vector is

ˆS T T I
p Is C C S= (32)

where SCT is transformation matrix from transmit 
telescope to star tracker.  It should be noted that 

ˆT IC  is an estimate.  The measurement residual 
error is 

( )m pz E s s= − (33)

where

1 0 0

0 1 0
E

 
=   

Next we want to express the measurement 
residual error in terms of attitude errors θE.  Let TCI

be the correct transformation, then

[ ]ˆ 1 ( )T I T I
EC C S θ= − (34)

where S is skew symmetric operator and S(θE) is 
given by

3 2

3 1

2 1

0

( ) 0

0

E E

E E E

E E

S

θ θ
θ θ θ

θ θ

−  = −  − 
(35)

Then sm can be written as

[ ]ˆ 1 ( )

S T T I
m I

S T T I
E I

s C C S

C C S Sθ
=

= − (36)
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Substituting Eqs. (32) and (36) into Eq. (33), we 
get

2 3

ˆ ( )

ˆ ( )

ˆ ( ) 0

S T T I
E I

S T T I
I E

S T T I
I x

z E C C S S

E C C S S

E C C S S x

θ
θ

= −
=

 =  
(37)

Therefore

2 3
ˆ ( ) 0S T T I

I xH E C C S S =                    (38)

The Kalman Filter update is

E

E

x Kz
b

θ 
= =                                          (39)

The initial state estimate is zero.  The attitude angle 
correction is changed to quaternion correction as 
follows

1 2 3

2 2
E EE E E

E
E

i j k
q Sin Cos

θ θθ θ θ
θ

    + += +        

rr r

(40)
Where

2 2 2
1 2 3E E E Eθ θ θ θ= + +

The corrected quaternion is

new old Eq q q=                                   (41)

The above equation implies quaternion 
multiplication.

4. DYNAMIC ANGULAR RATE
CALCULATION

The continuous dynamic equations of motion for the 
Bifocal Relay Mirror spacecraft are derived in 
section 2.  These equations produce the spacecraft 
angular rate from external control and disturbance 
moments applied to the body.  A similar discrete 
model can be applied in the spacecraft attitude 
processor software to produce a real time calculated 
estimate of the angular rate, referred to as the 
dynamic gyro.  The angular rate generated by this 
method can be used as a substitution for conventional 
gyroscope outputs.  Attitude determination based on 
the dynamic gyro can be implemented as a back up 
failure mode or a primary operating mode to increase 
the expected lifetime of the satellite gyroscopes.

4.1. Discrete Equations of Motion

The discretized equations of motion are derived 

from

sH M t∆ = ∆∑ (42)

where M∑  is the sum of external moments 

applied to the spacecraft including controls and 
modeled disturbances. This allows the total system 
angular momentum to be tracked with

s s sH ( 1) H ( ) Hk k+ = + ∆                         (43)

Subtracting the relative momentum of the reaction 
wheels and secondary body produces

s w relH H H H= − −                                  (44)

The calculated spacecraft angular rate is then given 
by

-1
T sI Hω =                                                  (45)

4.2. Momentum Correction From 
Kalman Filter Updates

The gyro bias error states, b% , are interpreted as 
spacecraft body rate errors.  Using the calculated 
spacecraft inertia matrix, Is, a correction to the 
system angular momentum can be generated by

corr s∆H I b= %                                            (46)

The Kalman filter momentum correction is 
applied as if the error in the dynamic gyro is 
attributable to the total spacecraft body.  The relative 
momentum terms from the secondary body and the 
reaction wheels are treated as if they are without 
error.

4.3. Error Sources

After initial calibration, attitude determination 
error in gyro-based is almost entirely attributable to a 
single set of imperfect gyroscope rate sensors.  As 
long as gyro data does not become erratic, a Kalman 
estimator based on a slowly changing rate bias plant 
model produces an effective attitude determination 
system even with relatively noisy rate inputs.

The error in rate calculations from dynamic 
modeling, on the other hand, is due to numerous 
factors and is much harder to characterize.  Since the 
dynamic calculation is produced from total system 
momentum tracking, any error in knowledge of 
external torques directly correlates to rate error.  
Errors in system or component moments of inertia 
have the same effect.  The data from all moving 
appendages and momentum exchange devices are 
critical to the accuracy of the rate calculation.  It is 
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important that all known biases be removed from 
sensor data and calculated input errors since the 
Kalman filter estimator is based on the assumption of 
uncorrelated zero-mean Gaussian noise.  Even if all 
input parameters were known exactly the discrete 
modeling of the spacecraft dynamics introduces 
some error.

External Control and Disturbance Torques
In the dynamic gyro, known externally applied 

moments are integrated in the system angular 
momentum calculations.  These include control 
moments other than those imparted by momentum 
exchange devices as well as modeled disturbance 
torques.  For the Bifocal Relay Mirror satellite, the 
gravity gradient torque is the most significant 
disturbance and can be modeled as an input to 
increase the accuracy of the dynamic rate calculation.  

Reaction Wheel Relative Momentum
The relative momentum of each reaction wheel is 

given by its orientation within the spacecraft, the 
inertia of its rotor and the wheel spin rate.  The 
imperfect sensor measurements from the reaction 
wheel tachometers introduce errors in system 
momentum calculation.  Relative orientation angles 
of reaction wheels are fixed and errors can be 
corrected through calibration.  Orientations of 
control moment gyros (CMGs), however, are 
variable.  Since these devices usually have high 
momentum, small gimbal resolver errors can have a 
significant impact on total system momentum 
calculations.  In this simulation, times varying 
artificial alignment errors are applied to the reaction 
wheel momentum measurements to observe the 
effects of CMGs alignment errors. 

Moment of Inertia Calculations
The inertia matrix also depends on internal sensor 

input from position encoders or potentiometers for 
relative angular orientation of appendages.  The 
model of the potentiometer that measures the relative 
angle of the receive telescope includes quantization 
effects and additive noise.  If appendage relative 
motion is slow or component moments of inertia are 
small, it may not be necessary to update the system 
inertia dyadic at the bandwidth of the attitude 
processor.  The affects of inertia update rate are 
evaluated.

5. SIMULATION RESULTS

The spacecraft dynamics, attitude determination, and 
control laws discussed in the previous sections were 
implemented on MATLAB/SIMULINK model. The 
following parameters are used for the simulation.

The simulation time period is 500 seconds.  The 
simulation solver method is ode5 (Dormand-Prince), 
and the solver fixed step size is 0.05 seconds.  The 
secular torque magnitude is 1e-4 Nm.  The transmit 
telescope inertia: Ixx = 2,997 kgm2, Iyy = 3,164 kgm2, 

and Izz = 882 kgm2; receive telescope inertia: Ix’x’ = 
1,721 kgm2, Iy’y’ = 1,560 kgm2, and Iz’z’=183 kgm2.  
The reaction wheel gains are k = [3000, 7000, 4500] 
and kd = [1000, 2000, 1000].  The control law delay 
for initial determination errors is 30 seconds.  The 
rate gyros static rate biases are 1e-4*[-1,1.5,1] 
rad/sec.  The initial errors are: for quaternion [0.008, 
0.012, -0.008] and for angular rate errors [-
0.001,0.001,0.002] rad/sec.  For the reaction wheels, 
the maximum torque is 1 Nm.

The command attitude profile is shown in Figure 2.  
The left figure shows the transmit telescope rotation 
in quaternions and the right figure shows the relative 
angle rotation of the receive telescope.   The profile 
resembles the maneuver required to maintain 
transmit and receive telescopes pointing during an 
overhead pass to conduct laser relay operations.  The 
majority of the maneuver is performed in the 
spacecraft pitch axis, q2, as both telescopes orient to 
points at fixed ground sites.  The orbit altitude is 715 
km with an inclination of 40 degrees.  Based on the 
ground site separation distance and orbital altitude, 
the largest relative angle is about 30 degrees during a 
near overhead pass between the uplink and downlink 
ground sites.

The magnitude of the total spacecraft angular 
momentum during the maneuvering profile is plotted 
in Figure 3.  The baseline simulation for Dynamic 
Gyro does not include gravity gradient torques.  In 
order to observe the performance of the attitude 
determination without updates, a 200 second star gap 
is simulated starting 100 seconds into the run.  As a 
worst–case analysis, the star gap occurs during the 
peak maneuvering time of the satellite including the 
rotation of the secondary body.  For simulation, rate 
gyros are replaced by dynamic gyro.  The accuracy 
of the angular rate calculation is entirely dependent 
upon the ability of the dynamic gyro to track the total 
spacecraft angular momentum.  The error in the 
magnitude of the total system momentum compared 
to the simulated actual momentum is shown in Fig.4.  
Figure 5 shows the comparison of the dynamic gyro 
and gyro based attitude determination system.  At the 
end of the gap, the error in the dynamic gyro based 
system is about five times that of the gyro-based 
system. Figure 6 shows the increase in performance 
of the dynamic gyro based attitude determination 
system when the gravity gradient moment is 
modeled.  At the end of the star gap, the attitude 
errors are comparable to the gyro-based system.  The 
total system angular momentum error is much 
smaller during the star gap.  Figure 7shows the effect 
of periodic alignment error of the net angular 
momentum of the reaction wheels with a magnitude 
of approximately 0.5 degrees.  A significant increase 
in attitude error estimation is developed during the 
star gap.  The dynamic gyro does not track the 
system angular momentum as well even during 
continuous star coverage.  Figure 8 shows the effects 
of decreasing the inertia calculation frequency from 
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q4

q3

q2

q1

20 Hz rate of the dynamic gyro to 10 Hz.  The 
quaternion error profile is significantly altered but 
the magnitude of the error is only slightly increased. 
The momentum error in the dynamic gyro takes 
longer to correct after the star gap since the Kalman 
filter attempt to correct for all errors as if they were 
due to spacecraft momentum

6. CONCLUSIONS

Dynamic gyro, estimating spacecraft angular rate 
from dynamic model of the system, provides an 
imperfect but operative means of estimating multi-
body spacecraft angular rates when the data from rate 
gyro sensors are not available.  The dynamic gyro 
performance is compared with the performance of 
rate gyros and the effects of primary error sources in 
the dynamic model are investigated.  It is shown that 
the corrections provided by a star tracker based 
Kalman filter make the system robust to 
measurement and parameter knowledge error 
sources.  Significant improvement in attitude 
determination performance is realized when the 
disturbance torques are modeled.  The other primary 
error sources include alignment error of momentum
exchange control devices, inertia update frequency, 
and relative angle and rate knowledge of slewing 
appendages. Error effects are amplified during the 
star gaps when no corrections to the dynamic model 
are available.  

This attitude determination concept is ideally suited 
to a spacecraft designed specifically for its 
implementation with precise internal sensors and 
mechanism to monitor spacecraft parameters and 
external torque modeling.
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Figure 2 Command Attitude Profile During Tracking Maneuver
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Figure 3 Total Spacecraft Angular Momentum Profile

Figure 4  Baseline Dynamic Gyro Angular Momentum Error
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Figure 5  Estimated Attitude Errors Using Rate Gyros

Figure 6 Errors with Gravity Gradient Disturbance Modeled in the Dynamic Gyro
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Figure 7  Effects of Reaction Wheel Alignment Error on the Dynamic Gyro Performance

Figure 8  Effects of Reducing Inertia Update Rate on Dynamic Gyro Performance.  
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