
 

 

Abstract— In this paper, the Filtered-X Least Mean Square 

(FXLMS) adaptive filter with bias integration technique is 

applied to an adaptive optics system where the Discrete Fourier 

Transform is used to project the measured phase onto the 

Fourier basis for modal control. The control law is applied in the 

complex-valued coefficient space and the FXLMS algorithm is 

modified accordingly for the complex-valued control. Numerical 

analysis is conducted for a feedback loop of a single Fourier 

mode in the presence of a disturbance representing a frozen flow 

atmospheric turbulence. The performance is compared with a 

Kalman estimator based control law proposed in the literature 

called Predictive Fourier Control (PFC). The proposed method 

demonstrated a similar performance for a stationary 

disturbance and improved performance for a slowly drifting 

disturbance. Whereas the performance of the PFC is very 

sensitive to the accuracy of the identification of the disturbance, 

the proposed method does not require such an explicit 

identification and produces minimum error for the given 

disturbance. 

 
Index Terms— Adaptive Optics, Adaptive Filter, Filtered-X 

LMS, Predictive Fourier Control. 

 

I. INTRODUCTION 

DAPTIVE Optics (AO) refers to optical control systems 

used for advanced telescopes or laser propagation 

systems where the phase aberration of the optical waves is 

measured by wave-front sensors (WFSs) and corrected by 

deformable mirrors (DMs). In recent years, control techniques 

that are more advanced than a simple classical control have 

been proposed [1-10]. Due to the increased size of the arrays 

in WFSs and  DMs, the computational cost of control schemes 

has become important in large AO applications, and the 

two-dimensional Discrete Fourier Transform has been 

introduced as a computationally efficient way for 

reconstructing the phase from the phase gradient measurement 

by Shack-Hartmann WFSs [11], [12].  

Poyneer et al. pointed out another benefit of Fourier 

decomposition for a class of disturbance and proposed a 

control scheme called Predictive Fourier Control (PFC) [9]. In 

the Fourier coefficient space, an atmospheric turbulence that 

obeys the frozen flow hypothesis exhibits distinctive peaks in 

the temporal frequency spectrum corresponding to each 

turbulence layer, and the PFC takes advantage of this 

observation for efficient modeling of the disturbance in the 

Fourier coefficient space. The identified disturbance is used to 

construct a Kalman filter which performs one-step-ahead 

prediction of the disturbance state to suppress the disturbance 

[9], [13]. Because the Fourier Transform is spatially 

orthogonal, the AO system is uncoupled in the Fourier domain 

and computational load for the control law is significantly 

reduced compared with full-state Multi-Input Multi-Output 

(MIMO) control laws.  The PFC is optimized for the current 

temporal dynamics of the disturbance and it requires 

repetition of disturbance identification and computation of the 

controller parameters. 

The purpose of this paper is to introduce an adaptive 

controller for the DFT based modal AO control system 

referred to here as Fourier basis AO control. Because of its 

adaptive nature, the proposed Filtered-X Least Mean Square 

(FXLMS) method can eliminate the need for the explicit 

disturbance identification and controller update required by 

the PFC.  The development is based on the assumptions that 

the controller is applied on the completely uncoupled Fourier 

modes and that a class of disturbance exists which exhibits 

distinctive peaks in the Fourier domain.  While whether these 

assumptions are appropriate or not is an important question in 

practice, it is out of scope of this paper and is not addressed. 

Given the uncoupling assumption, a Single-Input 

Single-Output (SISO) loop for an arbitrary mode is used to 

investigate the behavior of the control law. A Fourier basis 

AO control system is described in the next section followed by 

the description of the proposed control law. A brief 

description of the PFC is also provided. Numerical simulation 

results are presented in Section IV and Section V provides a 

discussion of the results. 

II. FOURIER BASIS CONTROL OF ADAPTIVE OPTICS 

Fig. 1 shows the block diagram of a Fourier basis AO 

control system considered in this study.  
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Fig. 1.  Block diagram of a Fourier basis Adaptive Optics control system. 
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The dynamics of the DM and the WFS are all assumed to be 

negligible except for the pure time delay denoted by d, and the 

relationship from the actuator command u to the sensor output 

ys, which can either be phase or phase gradient, is represented 

by a constant influence matrix M. The disturbance is denoted 

by  , and e and vm are the error and measurement noise, 

respectively. For an AO system with m sensor output signals 

and n actuator input signals, M is an m × n matrix and the 

sensor output and the actuator command are represented by 

vectors in m  and n , respectively.  

Commonly, the sensor output is transformed to a different 

vector space by a matrix F whose dimension is k × m to apply 

a control law. The controller output is then converted to the 

actual command for the actuators by a matrix G. If the rank of 

F is k and it is smaller than that of M, the path from u to ys 

which is FM can be diagonalized by the pseudo inverse of FM, 

i.e.,   IFMFM 
†

, where † denotes the pseudo inverse and I 

is an identity matrix of dimension k × k. Thus, choosing  †FM  

as G will uncouple the path from uc to ec, and a SISO 

controller can be applied individually on each component of 

ec. For example, let †
MF  , then IMMG  †† )(  for M 

whose rank is n < = m and the open loop path is 

.)( †††
IMMMMFMG    

If the rank of M is r < n, then modal reduction techniques 

such as the singular value decomposition can be applied. For 

instance, suppose T
UF  , where U  is the transpose of the 

first r column vectors of U which is obtained by the singular 

value decomposition .T
VUM   Because of the 

orthogonality of U and V, it can be shown that 

.))(( †
IVUUVUUFMG  TTTT   Wavefront sensors 

usually cannot observe piston mode whereas the DM may be 

able to produce it. In this case, the rank of M cannot exceed 

n-1 even for M with n < m, and the dimension of controller 

vector space needs to be reduced to less than the number of the 

actuators in the DM to achieve the uncoupling of the system. 

In the Fourier basis control, F represents the transform of 

the sensor output to the Fourier coefficients of the phase. If the 

sensor output is the phase, the two dimensional Discrete 

Fourier Transform can directly be applied and F becomes a 

matrix equivalent of the transform. When the sensor output is 

not the phase but the gradient of the phase as is usually the 

case with the wavefront sensors available today, the 

techniques to obtain the Fourier coefficients from the gradient 

information presented in [12] can be used. Due to the limited 

space, the details are omitted but interested readers are 

referred to the literature. Also, practical issues such as 

spillover effect of the DM or spatial aliasing of the aberration 

are not considered here. A detailed discussion on the latter can 

be found in [14]. In general, choosing a DM that has a 

geometry and specifications suitable for this particular control 

method is important for successful application. In the 

following, it is assumed the above mentioned techniques are 

applied and the uncoupling of the open loop path is achieved 

to the sufficient extent. 

One of the benefits of applying a controller in the Fourier 

coefficient space is that a class of disturbance exhibits 

distinctive temporal frequency peaks which can be 

represented by a low order model with sufficiently high 

accuracy [9]. This result, however, is obtained for square-grid 

measurement points whereas hexagonal array geometry is 

often found in AO systems. Thus, it is of interest to investigate 

if the temporal characteristics of the frozen flow disturbance 

in the Fourier coefficient space shown in [9] are preserved 

even in the case of hexagonal geometry. 

Suppose a very simple cosine phase function moving with 

velocities xv  and yv  in x and y direction, respectively, whose 

spatially sampled function is given as follows. 
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Here, M and N are the number of sample points and dx and dy 

are their intervals in the x and y directions, respectively. For 

simplicity, the aperture of the hexagonal array is assumed to 

be rectangular. The Fourier Transform of this function has a 

temporal frequency ])''(2exp[ tNdvlMdvkj yyxx   . 

In a hexagonal array, the sampling points of the alternate 

rows are shifted in the x direction by one half of the sampling 

interval. Let this spatial shift be x  and its normalized value 

with respect to the interval be .xdxm   Then, the DFT of 

the hexagonal array can be expressed as follows using the shift 

property of DFT.  
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The function c(n) alternately applies the shift in the x direction. 

Substituting (3) into (2) yields 
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Here, ),,( tlk  denotes the Fourier transform of the phase on 

the rectangular grid and 
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is ),,( tlk  shifted in the l direction in the frequency domain. 

It can be seen from this result that the geometry change of the 
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measurement points introduces extra frequency components 

along with the magnitude and phase changes, but the temporal 

frequency ])''(2exp[ tMdvlNdvkj yyxx    caused by the 

movement of the layer with velocities vx and vy is preserved in 

Eq. (4) to be exploited for disturbance attenuation. 

III. FOURIER COEFFICIENT SPACE CONTROLLER 

When complete uncoupling of the system is achieved, the 

MIMO system becomes a set of complex-valued SISO 

systems  in the Fourier coefficient space as shown in Fig. 2. 
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Fig. 2.  Diagram of the simulation model. All variables are complex-valued 

and the disturbance and measurement noise represent those projected onto 

the Fourier basis. 

 

Here, the projections of the disturbance and reconstructed 

phase onto the Fourier basis are denoted by   and y, 

respectively. The vd is the white noise driving the disturbance 

model and vm is the white measurement noise. White noise is 

used here instead of other disturbance models in order to 

evaluate the ideal performance of the PFC which is based on 

this white noise assumption. Any delay in the actual physical 

system is represented by an integer d.  

 

A. Normalized FX LMS with Bias Integration 

A block diagram of the normalized FXLMS adaptive filter 

proposed in this paper, which augments an existing integral 

control feedback loop, is shown in Fig. 3. The actuator and 

sensor delays are represented by pure time delay d1 and d2. 
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Fig. 3.  Block diagram of normalized Filtered-X LMS adaptive filter 

augmenting an existing integral control feedback loop. B. I. stands for bias 

integration. 

 

The control law of the adaptive filter loop is a Finite 

Impulse Response (FIR) filter given by Eq. (6), whose input 

signal and adaptive coefficients )(kwi  called weights are 

expressed as vectors defined in Eq. (7) and Eq. (8). 
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The bias integration technique originally introduced by Yoon, 

et al. [15], and modified by Corley, et al. [5], is applied here 

for additional robustness, and the input and weight vectors are 

augmented by the bias terms, 
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where xb is an arbitrary constant and wb (k) is the 

corresponding weight. The input of the FIR filter, called 

disturbance correlated signal, or reference signal, denoted by 

x is the estimate of the disturbance to be canceled, which is 

obtained as 
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Here, ][ˆ zS  is the transfer function from uAF(z) to ys(z), which 

represents so-called secondary path dynamics, and 

)1(][  zzKzH i  is the transfer function of the integral 

controller with gain Ki. The filter output uAF is added to the 

input of the integral controller and the filter adaptively 

modifies the frequency spectrum of x such that the filter output 

uAF cancels the disturbance observed in the error. The 

Filtered-X algorithm takes into account the effect of the 

secondary path dynamics from uAF(z) to ys(z) by filtering x[z] 

with ],[ˆ zS  i.e., 
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The normalized Filtered-X algorithm further processes this 

signal ][kx  by the following normalization formula, where 

  is a small constant to avoid division by zero. 
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The weight vector is updated by the Least Mean Square 

(LMS) algorithm, which is a steepest gradient descent method 

to minimize the instantaneous square error at time k, 
2)()( kekJ   [16]. The weight update formula for a 

real-valued system is written using x''[k] as 
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where   is the update gain and the normalization effect is 

ignored. For a complex-valued system, the instantaneous error 
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is evaluated by )()()( * kekekJ  , where * denotes the complex 

conjugate, and Eq.  (12) is modified as follows [17]. 

 

][][][]1[ kkekk *
xww         (13) 

 

B. Predictive Fourier Controller 

The Predictive Fourier Control is a Linear Time Invariant 

(LTI) controller optimized for the identified disturbance and 

measurement noise in the Fourier coefficient space. In the 

following, only a brief description of the PFC is presented as a 

reference. The details of the method can be found in [9].  

First, the parameters of the following complex-valued 

AutoRegressive (AR) disturbance model  
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is identified from the temporal Power Spectrum Density 

(PSD) of the disturbance. Each )(zPk  has a resonance peak at 

Tf kk  2}arg{ Hz, and this resonance frequency is 

determined by computing the cross-correlation of a template 

AR model and the disturbance PSD for all peaks whose 

magnitudes exceed a certain threshold. The static dc 

component is represented by k = 0, and L corresponds to the 

number of layers in the disturbance moving in different 

direction at various velocities.  When two or more frequency 

peaks are very close, it appears as a single peak and L becomes 

less than the number of the layers. 

Since this process only determines the phase of k , the 

magnitude of k  which represents the damping of the mode is 

determined by an empirical formula 20//21 Skk ff  

where fs is the sampling frequency. The magnitude parameter 
2
k  of each mode is obtained by fitting the corresponding AR 

model to the disturbance PSD. The measurement noise power 
2
m  is estimated from the power of the disturbance at a very 

high frequency range where no disturbance component is 

expected to appear. 

The obtained disturbance model is then converted to a state 

space form to construct a Kalman estimator which performs 

one-step-ahead prediction of the disturbance state whose 

conjugate is used to cancel the disturbance. A steady state 

optimal gain matrix for the Kalman estimator is obtained by 

solving an Algebraic Riccati Equation (ARE) formulated with 

the identified disturbance model and the measurement noise 

power. Because this state space system is SISO, the resulting 

controller can be expresses by the following transfer function. 
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IV. NUMERICAL SIMULATION 

Numerical simulation of the system shown in Fig. 3 was 

conducted with the delay d1 = d2=1 for a single feedback loop 

representing a control loop for an arbitrary Fourier mode. This 

is considered to be sufficient to demonstrate the qualitative 

behavior of the proposed method for the given class of 

disturbance. For the PFC, the controller replaces the integral 

controller and adaptive filter is removed. A disturbance 

representing a four-layer frozen flow atmospheric turbulence 

with a static phase aberration was generated to imitate the data 

shown in [9]. The parameters are shown in Table 1. The power 

of the disturbance noise dv  and the measurement noise mv  

are 10
-8

 and 10
-6

, respectively. The sample rate of the system is 

1000Hz. 

 
TABLE 1   

PARAMETERS OF THE DISTURBANCE 

Layers 0 1 2 3 4 

k  0.999 0.996 0.998 0.994 0.997 

kf (Hz) 0 -30 -10 15 50 

 

A normalized FXLMS adaptive filter with bias integration 

was designed for this simulation and the parameters are shown 

in Table 2. The gain of the integral controller was determined 

so that the control loop is stable with sufficient margin. 

 
TABLE 2 

ADAPTIVE FILTER CONTROLLER PARAMETERS 

Number of 

Weights 
    

Integrator gain 

Ki  
bx  

15 0.030 1.2 10-7 0.09 0.001 

 

The disturbance model and the controller parameters for the 

PFC were obtained as shown in Table 3. The hat ^ indicates 

the value is an estimate. The measurement noise estimate 2ˆ
m  

is 10
-6

.  
 

TABLE 3 

PREDICTIVE FOURIER CONTROLLER PARAMETERS 

Layers 0 1 2 3 4 

k̂  0.999 0.997 0.999 0.9985 0.9950 

kf̂ (Hz) 0 -30 -10 15 50 

2ˆ
k  

(10-8) 
0.379  0.172  0.100  0.044  2.801   

kp  
0.0516 

+0.0062i 

0.0830 

+0.1119i 

0.0225 

+0.0128i 

0.0157 

+0.0043i 

0.0327 

-0.0004i 

q =  0.2557 - 0.0387i 

 

Fig. 4 shows the disturbance PSD and the identified AR 

model with the estimated measurement noise. Unlike the 

frequency spectrum of a real-valued signal, the frequency 
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spectrum of a complex-valued signal is not symmetric with 

respect to the imaginary axis and both positive and negative 

frequencies are shown in the plot.  
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Fig. 4.  AR model of the open loop disturbance PSD (dot line) and the actual 

disturbance PSD (solid line). 

 

Fig. 5 shows the frequency responses of the PFC transfer 

functions. The PFC controller obtained using the nominal 

disturbance parameters in Table 1 is also shown for 

comparison. The sensitivity function has a slight increase 

around 70 Hz compared with that of the nominal PFC, which 

is caused by the identification error of the pole magnitudes. 
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Fig. 5.  PFC Frequency response. (a) PFC controller, (b) PFC feedback loop 

sensitivity function. 

 

The duration of the simulation was 15 seconds. The integral 

controller of the proposed method was turned on at 2.0 s and 

the adaptive filter was turned on at 2.1 s. For the PFC, the 

controller was turned on at 2.0 s. Fig. 6 shows the frequency 

spectra and the transient responses of the output y by the 

proposed method and the PFC. The steady state mean square 

error is computed from the output between 14 s and 15 s. The 

proposed method produces a transient about 27 times larger 

than that of the PFC due to the high gain of the integral 

controller, but it converges about 9 times faster and the steady 

state mean square error is 35 % lower than that of the PFC. 

The steady state error of the PFC is higher due to the increase 

of the frequency component around 70 Hz as shown in (a) of 

Fig. 6, which is caused by the bump of the sensitivity function 

shown in (b) of Fig. 5.  

Fig. 7 shows the result by the PFC with the nominal 

disturbance parameters. The error increase around 70 Hz is 

now disappeared and the controller achieves a steady state 

error lower than that of the proposed method in Fig. 6. The 

proposed method, however, also reduced the error when the 

number of weights was increased to 30. The steady state mean 

square errors of both methods approach the measurement 

noise level .10 62 m  
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Fig. 6.  Disturbance attenuation by PFC (identified disturbance parameters) 

and proposed method (15 weights):  (a) Power Spectral Density of the output, 

(b) Transients of the squared output. 
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Fig. 7.  Disturbance attenuation by PFC (nominal disturbance parameters) 

and proposed method (30 weights):  (a) Power Spectral Density of the output, 

(b) Transients of the squared output. 

 

Fig. 8 shows the effect of the number of weights on the 

steady state mean square error of the proposed controller. The 

error decreases as the number of weights increases until it 

reaches the lower limit at about 30 weights. 
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Fig. 8.  Effect of the number of weights on steady state error. 

 

The results so far addressed a disturbance with a stationary 

frequency spectrum. The performances of the proposed 

method with 30 weights and the PFC with the nominal 

disturbance parameters were investigated for a disturbance 

with drifting frequency peaks. The rate of change introduced 

was 0.3 Hz/s in randomly selected positive or negative 
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directions for all frequencies except the dc component whose 

frequency did not change. 

Fig. 9 shows the frequency spectra and transients of the 

output y. The frequencies start drifting at 5 s and continue 

through 15 s. As expected, the error by the PFC increases with 

time after 5 s, whereas the proposed method maintains the 

same error level. The error level, however, is slightly 

increased. This is due to the fact that when the disturbance 

frequencies start drifting, the weights never completely 

converge, which results in a residual error. This error 

increases as the rate of the frequency change increases. 
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Fig. 9.  Disturbance attenuation by PFC (nominal disturbance parameters) 

and proposed method (30 weights) for drifting disturbance:  (a) Power 

Spectral Density of the output, (b) Transients of the squared output. 

 

V. CONCLUSION 

A normalized FXLMS adaptive filter with bias integration 

was proposed for a Fourier basis AO control system under a 

multi-layer frozen flow atmospheric disturbance. The 

performance of the proposed control law was investigated 

through a numerical simulation of a single Fourier coefficient 

control loop representing an ideal decomposition of the phase 

by the Fourier Transform and compared with the performance 

of the Predictive Fourier Control proposed in [9]. 

For a stationary disturbance, the maximum attenuation that 

can be achieved by the proposed method and the PFC is 

almost the same regardless of the differences that the former is 

an FIR filter whose coefficients are adaptively updated and the 

latter is an Infinite Impulse Response (IIR) filter whose 

coefficients are time-invariant and determined by solving the 

optimal estimator problem formulated with the identified 

disturbance model. 

Compared with the PFC, the procedure for the proposed 

method to determine the number of weights and the update 

gain is not well established. Applying very conservative 

values may result in unnecessary computation due to extra 

weights and/or a very slow convergence caused by a too small 

gain. Some initial tuning is thus necessary. The parameters to 

be tuned, however, are only two scalars and the required effort 

is minimal. The PFC, on the other hand, is sensitive to the 

accuracy of the identified disturbance model. When the 

identification error is too large, direct tuning of the controller 

to improve the performance is not as simple as the tuning of 

the proposed method. 

An important advantage of the proposed method is that it 

can follow a disturbance with drifting frequencies. The error 

increases, but does not grow with time. The error by the PFC, 

on the other hand, increases with time for a drifting 

disturbance until the disturbance identification is conducted 

again to re-calculate the controller parameters, which 

increases the computational cost. 
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