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This paper deals with the problem of optimization of the final turn–into-the-wind maneuver of an 
aerial delivery system with account of the best known winds. The wind model required for the 
optimization algorithm to work may utilize onboard wind estimates only, incorporate the ground 
winds provided a priori or on-line by the target ground station, or be based on the winds measured and 
uplinked by the preceding system. The previous work by the authors took care of the major touchdown 
error contributor, downwind variation of the winds. The effect of these variations was mitigated by 
constantly recomputing an optimal reference trajectory to complete a final turn in a given time. This 
paper presents some modifications of the original optimization routine to accommodate some specific 
applications including intentional landing with a substantial crosswind component and operating in the 
mountainous areas with significant variations in the vertical component of the wind (updrafts and 
downdrafts). Specifically, the paper presents derivation of equations to account for one-, two- and 
three-dimensional structure of the wind. In addition, adjustments to the optimal control problem using 
the direct-method-based approach developed earlier for a simple one-dimensional wind model are 
developed. 

Abbreviations 
ADS  = Aerial Delivery System 
AGL  = above the ground level 
BCs  = boundary conditions 
CEP  = Circular Error Probable 
FAC  = final approach capture (point) 
GPS  = Global Positioning System 
TI  = turn initiation (point) 
TPBVP  = two-point boundary-value problem 
 

I. Background 
N
tw

the 

 an attempt to mitigate the effect of unknown variable winds, Slegers and Yakimenko formulated the following 
o-point boundary-value problem (TPBVP) (Fig.1).1,2 Using a right-handed coordinate system {W} aligned with 

prevailing ground wind (defining a downrange axis) we need to bring a non-powered aerial delivery system 
(ADS) from some initial point, with the state vector defined at 0t =  as 

I 
[0 0 0 0, , Tx y ψ=x ]         (1) 

(x - downrange, y - crossrange and ψ – heading in {W}) to another point 
*( ) ,0,

Tdes
f h appV W T π⎡ ⎤= − −⎣ ⎦x                (2) 

at . In Eq.(2),  is the estimate of a horizontal component of a steady-state airspeed, W c  is the only 
component of the wind vector 

ft t= *
hV onst=

[ ,0,0 TW=w ]

                                                

      (3) 
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and  is the desired final approach time. des
appT

Figure 1 shows the portion of a guided descent to be optimized (appearing in between two vertical lines). It 
occurs between the turn initiation (TI) point at some altitude  (defined by the estimate of W, and the components 
of the ADS velocity vector as explained in Ref.1) and final approach capture (FAC) point. 

0h

 
Figure 1.   Final turn-into-the-wind maneuver and landing approach. 

The altitude at  was defined based on the constant descent rate assumption ft t=
*

0
des

f v app f vh V T h t V= = − *            (4) 

(here  is the estimate of a steady-state descent rate). *
vV

Hence, we need to find the trajectory that satisfies the boundary conditions (BCs) (1) and (2) along with the 
constraint imposed on the control (turn rate), maxψ ψ≤ , and allows completing the maneuver in exactly 

0
*ˆ

des
turn f app

v

h
T t T

V
= = −          (5) 

The assumption of a constant descent rate allows eliminating the differential equation for an altitude and 
reducing ADS’ kinematics down to 

*

*

cos
sin

h

h

x V
y V

ψ
ψ

W⎡ ⎤+⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
          (6) 

From these two equations it follows that if the final-turn trajectory is given (defined analytically by ( )x t  and 
), then the yaw angle along this trajectory is related to the change of the inertial coordinates as ( )y t

1tan y
x W

ψ −=
−

                    (7) 

Differentiating Eq.(7) provides with the yaw rate control required to follow the reference final-turn trajectory in a 
presence of a constant downwind W 

2 2

( )
( )
y x W xy
x W y

ψ − −
=

− +
             (8) 

Once the TPBVP is solved, Eq.(8) provides the time history of the optimal control ( )opt tψ . It is this control 
profile that is tracked by the ADS’ control unit as explained in Ref.1. 

The developed guidance and control algorithm was implemented on the Snowflake ADS.3 In the period between 
May of 2008 and May of 2011 this system has been dropped from different deployment platforms from altitudes 
2,000-14,000 ft above the ground level (AGL) over 150 times.2 During the first set of three drops in May of 2008 
the Snowflake ADS exhibited the circular error probable (CEP) of 55m with the standard deviation of 9m.4 These 
parameters were gradually reduced to the CEP of 11m with the standard deviation of 6m, exhibited in the set of four 
drops in August of 2010.4 This outstanding performance of the smallest autonomously guided ADS, featuring the 
cheapest and therefore the worst canopy and being most susceptible to the winds was achieved by implementing the 
latest technologies in control theory1,6 and also by utilizing the best available options of accounting for the unknown 
surface-layer winds.3,7,8 
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This paper presents modifications of the original optimal control (8) based on alternative wind models, which 
can be quite different from the one presented in Eq.(3). To this end, the following section presents some flight test 
data recorded by an onboard sensors suite during a couple of arbitrary chosen drops showing that the actual values 
of  and W  can vary quite drastically. Based on observations of these data, Sections III and IV discuss different 
application-specific modifications of the final-turn optimization routine of Ref.1 and briefly described in the 
beginning of this section. More precisely, Section III accommodates linear and logarithmic wind profiles in the 
downwind direction (1D winds optimization), and Section IV considers both downwind and crosswind components 
(2D optimization). Section V simplifies computational algorithms of Section IV by utilizing the precomputed 
ballistic winds. Section VI addresses variations in the initial conditions for the final-turn maneuver caused by 
variable 2D winds. Section VII presents a simple way of mitigation the effects of wind updrafts and downdrafts (3D 
optimization). 

*
vV

II. Surface-Layer Winds 
Figure 2 presents two samples of data measured/estimated and recorded onboard the Snowflake ADS. The plots 

in the first column belong to one drop terminated with the miss distance of 10m, and in the second column – to a 
second drop that resulted in a miss distance of 6m. The first row of the plots presents the altitude versus time profile. 
The second row shows estimated downwind component of the wind (which changes all the time based on the latest 
observations of the ground track speed measured by the onboard Global Positioning System (GPS) receiver). The 
third row shows vertical speed of the ADS as measured by GPS and smoothed (filtered) by the onboard inertial 
navigation unit. The last row of the plots presents different stages of flight when these data were collected. 

      

      

  a)  

      

      

  b)  
Figure 2.   Flight parameters recorded during the two drops in August of 2010. 

As seen in practice, neither  nor W used in equation of Section 1 are constant. While the first set of data 
exhibits a kind of gradual decrease of the downwind component W with time (altitude), the second set of data 
features more or less constant winds up to about 200m altitude AGL with a sudden halved decrease below this 

*
vV
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altitude. For convenience of analysis, Fig.3 presents the values of  and W for the same sets of data as versus 
altitude, rather than time. Looking at both sets of data together one can notice that the descent rate (negative of the 
vertical speed) varies from 0m/s (as a result of some updraft motion) all way up to 6m/s, apparently affected by a 
close to the ground downdraft. It is indicative that both sets of data belong to the same ADS dropped at the same 
location less than an hour apart. No wonder that parafoils systems, being influenced by varying winds exhibit 
inconstant performance. 

*
vV

a)  b)  
Figure 3.   Altitude dependences of the ADS estimates. 

According to the guidance strategy described in Ref.1 the winds aloft only affect the location of the computed TI 
point along the downwind leg. This leaves all unmodeled dynamics to be handled at the following stages of flight, 
i.e. final (base) turn and final landing approach. Data presented in Figs.2 and 3 is zoomed to the final stages in 
Figs.4 and 5 to show parameter variations at the surface layer, staring at about 300m to include the downwind leg 
where the decision to turn is made. 

Obviously, in the general case the unaccounted winds may have components in all three directions 
( ) , ,dist

x yh w w
T

zw⎡ ⎤= ⎣ ⎦w             (9) 

(here xw  denotes a downwind component, not accounted for by Eq.(3), while zw  is considered positive for 
downdrafts to be consistent with the descent rate sign convention). With disturbances (9) the kinematic equations (6) 
become three-dimensional 

*

*

*

cos
sinh

v z

h x

y

x V W
y V
h V

ψ
ψ

⎡ w ⎤

w
w

+ +⎡ ⎤
⎢ ⎥⎢ ⎥ = +⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ − −⎣ ⎦ ⎣ ⎦

                 (10) 

In the original algorithm of Ref.1 however the unaccounted winds (9) were treated as disturbances, so that it was 
up to the control system to mitigate their effect while still using Eq.(6) to compute the reference control (7). Surely, 
these disturbances were then the primary reason for the ADS not tracking the calculated optimal-turn trajectory 
precisely. As shown in numerous simulations and in practice it is these winds that can cause the ADS to land short 
of the target (in the case of the higher than expected head winds) or overshoot it (tail winds). That is why the optimal 
trajectory needs to be constantly updated during the final turn, each time starting from the current (off the original 
trajectory) initial conditions (IC) and still forcing the ADS to be at point (3) within an updated  (5). turnT

The goal of the following sections is to account for wind disturbances (9) at the stage of generating the reference 
control, i.e. trying to use Eq.(10) instead of Eq.(6). Obviously, it can be done only if the wind disturbance 
components (9) can be modeled (using more information about the winds known a priori). To this end, Section III 
starts with more accurate modeling of downwind component of the surface winds, followed by Section IV 
introducing a crosswind component and ending with Section V discussing the vertical wind component. 

III. Optimization Based on the Linear and Logarithmic Surface-Layer Wind Models 
Assume that instead of a constant x-component of the prevailing wind W versus altitude h (Eq.(2)) we have a 

linear profile 
( ) GW h W Kh= +                    (11) 
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where  is a known ground wind and coefficient GW 1
0( )G 0K W W h−= −

( )x Gw h W

 is defined by the ground wind  and wind 
 measured at an altitude  (corresponding to the point where the final turn begins). In terms of Eq.(9) it means 

that we are trying to model the downwind disturbance as 

GW

0W 0h

0W Kh= − + . Such a profile might be based on 
the known ground winds (available from the nearby airport, measured by the target ground station,3,7 etc.) uplinked 
to the descending ADS. 

      

      

  a)  

      

      

  b)  
Figure 4.   Flight parameters exhibited at the 300m surface-layer (zoomed-in versions of Fig.2). 

a)  b)  
Figure 5.   Altitude dependences of the ADS’ estimates between the surface and 300m AGL altitude. 

Then, the original TPBVP of Section I should be reformulated for a slightly different system of kinematic 
equations 
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*

*

cos ( )

sin
h

h

V Wx
y V

ψ

ψ

h⎡ ⎤+⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎢ ⎥⎣ ⎦
           (12) 

and different BCs. To be more specific, starting from some (different) initial point, defined by a different expression 
for a distance past the target on the downwind leg to initiate the final turn maneuver (defined in Ref.1 as switchD ), 
we will need to bring a parafoil to the point 

( )* * 21
2 ( ) ,0,

Tdes des
f h app v appV W T KV T π⎡= − − −⎣x ⎤

⎦           (13) 

(computation of switchD
 To compute the offset in Eq.(13) we used the fact that the final landing approach starts at the altitude , so 

that using an obvious relation 

will be addressed in Section VI). 
* des

v appV T

*
v

dhdt
V

= −             (14) 

we may write 

( ) ( ) ( ) ( )
*

*

0
* * * * 1

2* *
0 0

( )

des des
app v app

des
v app

T V T
des des

f h h h h G app v ap
v vV T

dh dhx V W dt V W V W V W T KV T
V V
−

= − = − = − = − −∫ ∫ ∫ * 2
p       (15) 

In this case, inverting equations (12) yields 
1tan

( )
y

x W h
ψ −=

−
      (16) 

Compared to Eq.(7), Eq.(8) features and altitude-dependent wind profile , so that its differentiation with 
account of Eq.(11) results in a slightly different equation for the turn rate 

( )W h

*

2 2 2 2
( ) ( )( ) ( )

( ) ( )
vy x W x KV yy x W x W y

x W y x W y
ψ

− − −− − −
= =

− + − +
              (17) 

(cf. with Eq.(8)). 
The only modifications the numerical algorithm described in Ref.1 requires in this case is that it should involve 

the new BCs 
*

0 0
*

0 0

cos

sin
h

h

V Wx
y Vτ

ψ

ψ=

⎡ ⎤+⎡ ⎤
= ⎢⎢ ⎥

⎣ ⎦ ⎢ ⎥⎣ ⎦
⎥ ,                                

* *
0 0

*
0 0 0

sin

cos
v h

h

KV Vx
y Vτ

ψ ψ

ψ ψ=

⎡ ⎤+⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎢ ⎥⎣ ⎦
,       (18) 

( )* * 2 * *

0
f

des
h G v appx V W KV T

y τ τ=

1
2 ( )

0f

des des
h G app v appV W T KV Tx

y τ τ=

⎡ ⎤− −⎡ ⎤
⎢ ⎥=⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

,     
⎡ ⎤− + +⎡ ⎤

= ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎢ ⎥⎣ ⎦

       (19) 

as well as computation of an altitude 
*

1 1j j v jh h V t− −= − Δ , 2,...,j N= , ( 1h h0≡ )         (20) 
and the corresponding wind magnitude at each computational node 

j GW W Khj= +                    (21) 
The latter two values then are to be used to compute time intervals between two computational nodes 

2 2
1 1

1 *2 2 *
1 1

( ) ( )

0.25( ) ( )cos
j j j j

j
h j j h j j

x x y y
t

V W W V W W ψ
− −

−
1j− − −

− + −
Δ =

+ + + +
       (22) 

and heading 
1tan j j

j
j j j

y
x W
λ

ψ
λ

− ′
=

′ −
          (23) 

In the case when the ground winds are not available a general logarithmic wind profile may be used in lieu of the 
liner profile of Eq.(11)8 

( ) ln( )W h a hβ= +         (24) 
In this case some of the above equations will be replaced with the new ones 
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( ) ( )
*

* *
*

0

ln( )

des
v appV T

des des des*
f h h app app v app

v

dhx V W V T T V T
V

α β α= − = + − −∫           (25) 

* 1
0 0 0

*
0 0 0

sin

cos
h v

h

V ahx
y Vτ

ψ ψ

ψ ψ

−

=

*V⎡ ⎤− −⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎢ ⎥⎣ ⎦
                    (26) 

( )* *ln( )

0f

des des des
h app app v appV T T V Tx

y τ τ

α β α

=

⎡ ⎤+ − −⎡ ⎤
⎢ ⎥=⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

,     
* *ln( )

0
f

des
h vx V a V T

y τ τ

β

=

app⎡ ⎤− + +⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎢ ⎥⎣ ⎦
     (27) 

and 
ln( )j jW a hβ= +                   (28) 

The remaining equations will still be the same. 

IV. Accommodating Cross-Wind Data 
The optimization routine of the Snowflake guidance algorithm can also accommodate crosswinds if they are 

known in one form or another. This capability may be useful in organizing a swarm attack or landing onto a ship’s 
deck, not necessarily aligned with the wind.9 Consider 

( ) ( )x xw h f h= ,      ( ) ( )y yw h f h=          (29) 
to be x- (downwind) and y- (crosswind) components of a horizontal wind profile approximated with some analytical 
dependence (e.g. of the form of Eq.(11) or (24) or cubic spline). Then, we can write 

*

*

cos ( )

sin ( )
h x

h y

V wx
y V w

ψ

ψ

h

h

⎡ ⎤+⎡ ⎤
⎢ ⎥=⎢ ⎥ +⎢ ⎥⎣ ⎦ ⎣ ⎦

            (30) 

Note that instead of Eq.(6) we are now using the first two equations of (10), emphasizing that the entire trajectory is 
intentionally aligned not with the major wind component, so that  can actually be even larger than

 
  (i.e. 

we let ). 
( )yw h ( )xw h

0W ≡
Accounting for the new kinematics described by Eq.(30) the final point can be defined as 

, ,
T

f f fx y π⎡ ⎤= −⎣ ⎦x                     (31) 
where the offsets in x- and y- direction will be computed as 

*

*
*

0

( )

des
v appV T

des
f h app x

v

dhx V T w h
V

= − ∫ ,     

*

*
0

( )

des
v appV T

f y
v

dhy w h
V

= − ∫                 (32) 

The heading angle equation will be 
1 ( )

tan
( )

y

x

y w h
x w h

ψ − −
=

−
                     (33) 

while its derivative will be presented by 
* *

2 2

( ( ) )( ( )) ( ( ) )( ( ))

( ( )) ( ( ))
y v x x v y

x y

y w h V x w h x w h V y w h

x w h y w h
ψ

′ ′− − − − −
=

− + −
       (34) 

(where  and ). The total speed will now be expressed as /x xw dw d′ = h h/y yw dw d′ =

( ) ( )22 2 *2 *( ) ( ) 2 ( )cos ( )sinG h x y h x yV x y V w h w h V w h w hψ ψ= + = + + + +         (35) 

The numerical procedure will proceed with the boundary conditions 

0

00

xx
yy τ =

⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
,     ,     

*
0 0

*
0 0 0

cos ( )

sin ( )
h x

h y

V wx
y V wτ

ψ

ψ=

⎡ ⎤+⎡ ⎤
⎢ ⎥=⎢ ⎥ +⎢ ⎥⎣ ⎦ ⎣ ⎦

h

h *

y

y

V

V

* *
0 0

*
0 0 0

sin ( )

cos ( )

h x

h y

V w hx
y V w hτ

ψ ψ

ψ ψ=

⎡ ⎤′− +⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥′+⎣ ⎦ ⎣ ⎦
    (36) 

f

f

f

xx
y yτ τ=

⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎢ ⎥⎣ ⎦
,     

* ( )
( )

f

h x

y

x V w h
y w hτ τ=

⎡ ⎤− +⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎢ ⎥⎣ ⎦
,     

0
0

f

x
y τ τ=

⎡ ⎤ ⎡
=

⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

          (37) 
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and will involve computing wind components at each step 
( )xj x jw f h=      and         (38) ( )yj y jw f h=

to be used in the numerical equations similar to those given in Section IV. 

V. Using Ballistic Winds 
In the previous section we were relying on some analytical wind profiles ( )x xw f h=  and . In 

practice however the components of the horizontal wind can be available as the look-up tables, containing triples 

( )y yw f h=

jh , 

xjw , and  (or wind magnitude and direction, instead of the last two parameters). In this case, to avoid computing 

derivatives 
yjw

xw′  and  in Eqs. (34) and (36) we could use the so-called ballistic winds. By definition, if at some 

altitude H we have a ballistic wind of magnitude WB and direction 
yw′

WΨ , then the effect of variable winds  and 
 for some system with the descent rate Vv on its way from altitude H down to the surface is reduced to simple 

formulas 

( )xw h
(yw )h

*( ) cosB W
v

Hx h W
V

= Ψ ,     *( ) sinB W
v

Hy h W
V

= Ψ            (39) 

or in other words 

* *
0

1 ( ) cos
H

x B W
v v

Hw h dh W
V V

= Ψ∫ ,     * *
0

1 ( ) sin
H

y B
v v

Hw h dh W
V V W= Ψ∫             (40) 

(Note, usually xw  and  are measured in the local North-East-Down coordinate system, so  is a direction with 

respect to the true North. However in our case 
yw WΨ

xw  and  are expected to be provided by the first descending 

system in {W}, so that  will also be calculated in {W}). 
yw

WΨ
Substituting definite integrals in Eq.(40) with the finite sum of trapezoids based on the discrete values of ,  

and 
kh kw

wkψ , , we get 1,...,k = M

( ) , 1
1 ;

2
cos

2

M
xk x k

k k M M W M
k

w w
h h h W−

−
=

+
− = Ψ ( )∑ ,     , 1

1 ;
2

sin
2

M
yk y k

k k M M W M
k

w w
h h h W−

−
=

+
− =∑ Ψ     (41) 

The index starts from 2 because by definition the winds measurements at the lowest altitude can be considered 
ballistic winds at this altitude. 

From Eqs.(41) it further follows that 

( )( )

( )( )

( )( ) ( )( )

1 , 1
2

;

1 , 1
2

2 2

1 , 1 1 , 1
2 2

tan

1
2

M

k k yk y k
k

W M M

k k xk x k
k

M M

M k k xk x k k k yk y
k kM

h h w w

h h w w

W h h w w h h w w
h

− −
=

− −
=

− − −
= =

− +
Ψ =

− +

⎛ ⎞ ⎛= − + + − +⎜ ⎟ ⎜
⎝ ⎠ ⎝

∑

∑

∑ ∑ k−
⎞
⎟
⎠

M

      (42) 

For the specific case when , 1k kh h h const−− = Δ = 2,...,k = , Eqs.(42) can be further reduced to 

( )

( )

, 1
2

;

, 1
2

tan

M

yk y k
k

W M M

xk x k
k

w w

w w

−
=

−
=

+
Ψ =

+

∑

∑
,   ( ) ( )

2 2

, 1 , 1
2 22

M M

M xk x k yk
k kM

hW w w w w
h − −

= =

Δ ⎛ ⎞ ⎛= + + +⎜ ⎟ ⎜
⎝ ⎠ ⎝
∑ ∑ y k

⎞
⎟
⎠

             (43) 

If the ballistic winds are known a priori, meaning that ( )x xw f h=  and  were provided by the first 
descended system as a look-up table, then the original guidance algorithm of Ref.1 assuming constant winds, can be 
used with no change. 

( )y yw f h=
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VI. Computation of the Initial Conditions for the Final into-the Wind Turn 
In addition to the modifications of the original algorithm of Ref.1 discussed in the previous section, different 

wind models require changing the initial conditions to initiate the final turn as well. Following the original guidance 
algorithm of Ref.1, the x- (downwind direction) budget equation for two phases, base turn ( [ ]0 1;t t t∈ ) and final 

approach ( [ ]1 2;t t t∈ ) can be represented as 

( )
1 2 2

0

0 1 0

0* * *( ) ( ) ( ) ( )
t t t

switch h h app h app turn app h
t t t

D W h dt V W h dt V T W h dt V T T T W= − + − = − = − +∫ ∫ ∫   (44) 

Here switchD  is the distance passed the target’s traverse when the base turn should be initiated (in this case upon 

completion of the aforementioned two phases the ADS will be right on/above the target), and 
0

0

h
W  denotes a 

downwind component of the wind averaged within the altitude range [ ]00;h h∈ . 
The altitude budget equation for these two plus the portion of the downwind leg phase starting at some altitude h 

at a distance x from the target’s traverse is 

0

* *
*

switch
v v turn v apph

h h

x D
h V V T V T

V W

⎛ ⎞
− +⎜ ⎟= +⎜ ⎟⎜ ⎟+⎝ ⎠

*+                      (45) 

Ideally, when switchx D=  the altitude h should be equal to . In practice however it may not be the 

case. In order to eliminate the altitude error, we may want to adjust the actual final approach time .  

*(v turn appV T T+ )

appT

Resolving Eqs. (45) and (45) with respect to switchD  and  yields appT

( ) ( )
( )

( ) ( )
0 0 0 0 0

00

0 0 0 0 0 0 0 0* * * * *

0 00 0 ** * 2 22 2

h h h turn h hh h h h h h h h
switch

hv h h hh h

hV V W W hW W W x V W T V V W W
D

V W WV V W W

− + + − − + + − +
= −

− +− +
       (46) 

( )
( )

( )
0

00

0 0 0 0* *

0 00 0 ** *

2

2 22 2

h turn hh h h h
app

hv h h hh h

h V W W x T V W W
T

V W WV V W W

− + − + − +
= −

− +− +

0          (47) 

(here we used an obvious relation 0

0

0 0h

h h
W W W= −

h
). 

In the case of 
0

0 0
( )

h h
W W W const h= = = , Eqs. (46) and (47) are simplified to those of the original guidance 

algorithm of Ref.1. In all other cases, Eqs. (46) and (47) have to be used. For the linear and logarithmic surface-layer 
wind models (12) and (24) of Section III the averaged winds from some current altitude h down to the ground can be 
computed as 

( )0 1
2

0

1
h

G Gh
W W Kh dh W

h
= + = +∫ Kh                    (48) 

( )0

0

1 ln( ) ln( )
h

h
W a h dh h

h
β β α α= + = + −∫            (49) 

respectively. Substituting 
0

h
W  and 

0

0

h
W , computed using Eq.(48) or Eq.(49), into Eqs.(46),(47) results in in a wind-

model-specific values for switchD  and  (they are quite bulky and are not given here). appT

Alternatively, the values for 
0

h
W  and 

0

0

h
W can be substituted with the corresponding downrange component of 

the ballistic winds (computed in accordance with Eq.(42) for h and , respectively) 0h
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( )0
( ) cos ( )B Wh

W W h h= Ψ ,     ( )
0

0
0 0( ) cos ( )B Wh

W W h h= Ψ                      (50) 

In the case of the two-dimensional wind model (including the crosswind component), Eqs.(46)-(50) will still be 
valid, since computation of switchD  relies on the downrange winds only. 

VII. Accounting for Vertical Wind Disturbances 
Suppose we managed to have two ADSs, so that while descending the first one produces and passes the winds 

estimates to the second one. Such estimates will be represented by the GPS time-stamped quadruples: , kh xkw , , 
and 

ykw

zkw ,  (  corresponds to 2,3,...,k = M 1k = 0h = ). As shown in the previous sections, even if triplets , kh xkw , 
 are available, accounting for these data while generating a reference trajectory may still pose a computational 

problem. Accounting for the vertical component of the wind , i.e. updrafts and downdrafts, is even more 
complicated. In a non-stable atmosphere this component of the wind may cause the same type of problem as 
unaccounted for horizontal winds simply because it changes the descent time forcing ADS to land sooner (shorter of 
the target) and later (resulting in the overshoot). 

ykw
( )zw h

For example, consider a sudden updraft on the downwind leg (Figs.4a and 5a) or downdraft while ADS is at the 
final turn (Figs.4b and 5b). Obviously, such events may cause a serious problem. At the downwind leg a vertical 
motion of the air mass cause a violation of the altitude budget equation (45). The final turn maneuver is therefore the 
last chance to mitigate this violation. However, updrafts and downdrafts at this phase of descent mess the optimal 
solution obtained assuming a certain time of maneuver  (Eq.(5)). The capability to recompute this maneuver 
while turning even at each control cycle (if needed) was a real breakthrough of the original guidance algorithm.1 Yet, 
as opposed to updrafts, downdrafts may be still of the major concern because they may decrease the time of the 
final-turn maneuver at once, leaving no time to recover. Hence, accounting to the vertical winds may be quite 
beneficial. 

turnT

Suppose that the vertical component of the wind is known. Again, it most likely comes as a look-up table,  vs. kh

zkw , but theoretically we could use a low-order polynomial regression to approximate it with some analytical 
dependence . In this case this dependence may be used to modify the vertical motion equation (14) to ( )zw h

* ( )v z

dhdt
V w h

= −
+

                   (51) 

This equation is then to be used in Eqs. (15), (25), (32), (40), (45), (48), and (49). Obviously, depending on the 
specific analytical representation  the resulting equations may be very bulky, so the alternative approach may 
be based on the analogous of the ballistic winds concept introduced in Section V, which does not require analytical 
regression but can rather utilize ( ,

( )zw h

kh zkw ) pairs explicitly. 
Following Eqs. (40) and (41), let us introduce 

( )(0
1 ,

20

1 1( )
2

h M

z z k k zk zh
k

w w h dh h h w w
h h

)1k− −
=

= ≈ − +∑∫    (52) 

which denotes a downdraft component of the wind averaged within the altitude range [ ]0;h∈ h . Using this average 
downdraft we can rewrite Eq.(51) as 

( )0*
v z hh T V w= +                                 (53) 

This equation (implicit in h) allows you to estimate time T needed to descent from the altitude h. Now let us use 
Eq.(53) to correct Eq.(5). To this end let us use Eq.(53) to replace Eq.(4) with 

( ) ( )0*
0

FA

FA TI

hdes
v z app turn v zh

V w T h T V w+ = − +*
h

       (54) 

Noting that 0FA

TI TI FA

h
z z zh h

w w w= − 0

h
 we arrive to 

( )
( )

0*
0

0 0*

FA

TI FA

des
v z apph

turn

v z zh h

h V w T
T

V w w

− +
=

+ −
            (55) 
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Using this corrected value of the final turn maneuver, allows onboard guidance unit to produce a more balanced 
control input ( )opt tψ . 

In addition to correcting the time of the maneuver the optimization algorithm may include an additional varied 
parameter. To be more specific, we can replace the final condition (2) with the new one 

* *( ) cos , ( ) sin ,
Tdes des

f h app f h app f fV W T V W Tψ ψ⎡ ⎤= − − −⎣ ⎦x ψ                (56) 

with the value of fψ  being variable. This allows cutting the final turn maneuver and gliding directly to the target 
with fψ π≠ − . Similar changes can be made for any wind model considered in the previous sections. Specifically, 
the final conditions of Eq.(19) can be substituted with 

( )( )
( )( )

* * 21
2

* * 21
2

( ) cos

( ) sinf

des des
h G app v app f

des des
h G app v app f

V W T KV Tx
y V W T KV Tτ τ

ψ

ψ=

⎡ ⎤− −⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦ − − −⎢ ⎥⎣ ⎦

,              
* *

*

cos

sin
f

des
h f G v app

h f

V W KV Tx
y Vτ τ

ψ

ψ=

⎡ ⎤+ +⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
,      (57) 

Eq.(27) with 

( )( )
( )( )

* *

* *

ln( ) cos

ln( ) sinf

des des des
h app app v app f

des des des
h app app v app f

V T T V Tx
y V T T V Tτ τ

α β α ψ

α β α ψ=

⎡ ⎤+ − −⎡ ⎤ ⎢=⎢ ⎥ ⎢⎣ ⎦ − + − −⎢ ⎥⎣ ⎦

⎥
⎥

* *

*

cos ln( )

sin
f

des
h f v app

h f

V a Vx
y Vτ τ

ψ β

ψ=

,     
T⎡ ⎤+ +⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

,   (58) 

and Eq.(37) with 
2 2

2 2

cos

sinf

f f f

f f f

x yx
y x yτ τ

ψ

ψ=

⎡ ⎤+⎡ ⎤ ⎢=⎢ ⎥ ⎢⎣ ⎦ − +⎢ ⎥⎣ ⎦

⎥
⎥

h

h
,                                                   

*

*

cos ( )

sin ( )
f

h f x

h f y

V wx
y V wτ τ

ψ

ψ=

⎡ ⎤+⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦
                    (59) 

VIII. Conclusion 
The direct-method-based approach to optimize the final-turn maneuver and mitigate all the errors of the previous 

phases of a guided flight of an aerodynamic decelerator system that was developed earlier for a simple one-
dimensional wind model can be modified to accommodate more complex models as well. Specifically, the paper 
presented modifications involving: i) variable (with altitude) downwind component of the wind based on no prior 
knowledge of the surface-layer winds or incorporating ground wind data provided by the target ground weather 
station on-line, ii) variable downwind and crosswind components, again based on online wind estimates at the 
current altitude and/or surface-layer wind magnitude and direction provided by the target ground weather station, 
and iii) variable 3D wind uplinked in real time by the preceding system. Even the original guidance and control 
architecture assures unprecedented into-the-wind touchdown accuracy of about 10m CEP with a maximum miss 
distance of 30m, demonstrated in over a hundred drops of the miniature autonomous parafoil delivery system 
Snowflake. Modifications presented in this paper will allow users to utilize more complex tactical scenarios, e.g. 
intentional landing with a substantial crosswind component or operating in the mountainous areas with significant 
variations in the vertical component of the wind, while preserving the superb touchdown accuracy. 
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