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Abstract—This paper outlines an investigation into the use of a
simple, focal-plane imaging sensor for guidance of an autonomous
parafoil system for approach and landing on a moving platform
such as a ship underway. The perspective-projective transforma-
tion between an object in a three-dimensional world and an image
on a two-dimensional plane is analyzed and then formulated
using a homogeneous coordinate system. The estimation problem
is addressed; specifically, the challenge of dealing with the out-
of-frame condition due to parafoil oscillation as it approaches
the target. A dual-mode Kalman estimation-scheme is proposed
that suspends measurement when the target is out-of-frame, and
incorporates a two-view measurement when the target reenters
the frame.

Keywords—vision, small UAV, robot

I. INTRODUCTION

Autonomous aerial delivery systems (ADSs) are autonomous
vehicles that are deployed from an airborne carrier vehicle and
that descend to the earth under a steerable round parachute
or rectangular parafoil canopy. These systems are used by
the U.S. Army and U.S. Air Force most often for resupply
of ground forces. In this way, ADSs represent the modern
evolution of aerial delivery, or airdrop techniques that came
into widespread use during the Second World War.

Modern ADSs have achieved a high degree of accuracy in
guiding themselves toward a fixed target on land. In recent
conflicts in Iraq and Afghanistan, the U.S. Air Force and
U.S. Army have relied on aerial delivery to resupply forward
operating bases that are widely dispersed about the region of
operations and are often located in rough terrain. A recent
survey of research and development efforts, within the U.S.
Department of Defense and also within NATO, indicates very
active experimentation on aerial delivery systems ranging in
weight capacity from 10 lbs up to 42 000 lbs. [1]

The demonstrated utility of precision aerial delivery systems
to ground forces has spurred a quickening pace of this field
of research; however, the use of precision aerial delivery as
a technique for providing swift and flexible logistics delivery
to ships underway is an untapped area of investigation. The
possible uses of precision aerial delivery in the maritime
domain include not only vertical replenishment, or resupply of
vessels underway, as proposed in previous work by Hewgley

Fig. 1. Snowflake prototype ADS. The Snowflake prototype ADS glides toward
landing at Camp Roberts, California.

and Yakimenko [2], [3], but also as a means for sensor
emplacement, both on the ocean, and aboard vessels underway,
and as a means to facilitate rapid movement of stores from ship
to shore.

The goal of the research described in this paper is that of
enabling an autonomous ADS to land on a moving platform,
such as the landing deck of a ship at sea. To accomplish this
feat, the ADS must first estimate both the position and velocity
of the target, and then plan a trajectory to be followed follow
down to the target. Described herein is the development of a
novel, dual-rate state-space estimation scheme that enables a
moving observer to use measurements from a monocular visual
sensor to estimate the position and velocity of a target even
when the target is intermittently out of view. A development
team consisting of members from Naval Postgraduate School
and University of Alabama in Huntsville has built a small
prototype ADS called Snowflake and conducted a series of flight
tests starting in 2008 and continuing to the present day [4].
During some of these tests, the team gathered data to support
visual estimation algorithm development.

II. CURRENT AUTONOMOUS SHIPBOARD LANDING
CAPABILITY

The idea of autonomous shipboard landing has, until now,
been associated only with powered unmanned aircraft systems
(UASs). Indeed, autonomous landing and takeoff of rotorcraft
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unmanned aircraft system (RUAS) is a current capability pos-
sessed by the U.S. Navy, and also available commercially.
The U.S. Navy’s MQ-8B Fire Scout vertical take-off and
landing tactical unmanned aerial vehicle (VTUAV) is designed
to take off and land autonomously from certain air-capable
ships using a system known as UAV Common Automatic
Recovery System (UCARS).

Regarding UCARS, landing guidance is achieved using a
dedicated microwave communication link between a sensor
package installed on the landing platform and the aircraft.
Other instrumentation in development for autonomous landing
includes sophisticated carrier-phase, shipboard-relative Global
Positioning System (GPS) receivers, and active light detection
and ranging (LIDAR) sensors on the aircraft. Visual sensors
with computer vision algorithms are lighter, cheaper, consume
less power than these alternatives. For a one-way autonomous
vehicle such as an ADS, minimizing the expense and weight
of the required sensors is of prime importance.

Before proceeding further, the question should be addressed
of why monocular vision (one camera) is used and not
binocular, or stereo, vision (two cameras). For the application
of an ADS attempting to land on a moving target on the ocean’s
surface, it was presumed that cheaper and more expendable
sensors would be preferable to more complex and expensive
systems. Binocular, or stereo vision systems, while declining
in price, still require baseline calibration between the two
visual sensors and more sophisticated video processing than
do monocular systems. For these reasons, it was decided that
for the purposes of this research, only methods that could be
applied to a monocular system would be considered.

A monocular visual system has the additional advantages
of being passive and not requiring any supporting equipment
to be installed on the target. Furthermore, monocular sensors
are inexpensive to implement for rapid prototyping and field
testing. The main challenge of the visual estimation portion
of the landing task is that an ADS tends to oscillate in yaw
in flight. This oscillation can be caused by wind, or by
the vehicle dynamics after a control actuation. Rather than
adding a complicated panning mount to the visual sensor, an
algorithm was developed that uses the motion of the ADS in
an advantageous way. Using the inherent oscillatory motion
that occurs, the estimation algorithm incorporates additional
measurements of target position created from different views
of the target.

III. PROJECTING A 3D SPACE ON TO A 2D IMAGE PLANE

It is well known that the human brain forms a 3D represen-
tation of the scene observed by the human visual system using
stereo vision. Monocular machine vision systems are known
to suffer from a lack of depth perception, and thus need a
working mathematical relationship between each object point
location in the three-dimensional scene, and the corresponding
image point location on the two-dimensional image plane. The
perspective-projective transformation (see Schalkoff [5] for
an excellent introduction) is a mapping of object coordinates

xo ∈ R3 to image coordinates xi ∈ R2. Critical to this
transformation is the selection of a coordinate system.

A. Using Homogeneous Coordinates

An effective technique for using matrix multiplication to
calculate this transformation is the use of homogeneous co-
ordinates, by which both object coordinates xo ∈ R3 and
image coordinates xi ∈ R2 are multiplied by scale factors wo

and wi, respectively, and these scale factors are appended as
an additional element to each of these vectors. An overbar
denotes the homogeneous versions of the coordinate vectors,
as x̄o ∈ R4 and x̄i ∈ R3.

Thus, x̄o is a four-dimensional vector describing the co-
ordinates of an object in the 3D world, and x̄i is a three-
dimensional vector describing the coordinates of an image of
that object on the two-dimensional image plane:

x̄i =

wiu
wiv
wi

 x̄o =


wox
woy
woz
wo

 , (1)

where (u, v) are the coordinates of the image of the object on
the 2D image plane.

B. Perspective-Projective Transformation

Assuming that the coordinates of both image and object are
defined with respect to the same coordinate axes, and using
homogeneous coordinates, the perspective-projective transfor-
mation can then be represented by matrix P ∈ R3×4, such
that

x̄i = Px̄o. (2)

Matrix P from (2) is known as the projection matrix.
Consider a coordinate frame with origin Oi located in the

image plane, and with mutually orthogonal axes Xi, Yi, and Zi

as shown in Fig. 2. The coordinates of the object in this frame
are (xo, yo, zo). The coordinates of the object’s image on the
image plane are as follows: coordinate u is the measure of the
image position along the image plane Yi axis, and coordinate
v is the measure of the image position along the image plane
Zi axis.

The assumption that xo � f leads to the following
approximations:

u ≈ fyo
xo

v ≈ fzo
xo

. (3)

which can be cast in matrix form as:uv
1

 =

0 f 0 0
0 0 f 0
1 0 0 0



w′xo
w′yo
w′zo
w′

 . (4)

where the scale factor for the homogeneous coordinates of the
object has been normalized using w′ = wo/wi. The matrix in
(2) corresponds to P of (1).
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Fig. 2. Geometry of the perspective-projective transformation. The object
with coordinates (x, y, z) in the 3D world is projected on to a 2D image
plane. The coordinates of the image are (u, v).

C. Frames of Reference

In the following, a global coordinate frame will be used
to describe objects in the 3D scene. This frame will have
a different origin and orientation from the image coordinate
frame that is aligned with the image plane. For the problem at
hand, both the observer and target can be located with respect
to the global coordinate frame, and two additional vectors
defined: gpT is the position vector of the target, and gd is
the displacement, or position, vector of the observer.

Next, let the set of Euler angles, (φ, θ, ψ), represent a
rotation from the global coordinate frame {g} to the image
coordinate frame {i}, and let Λ represent a vector with these
three angles as elements. Let R(Λ) represent a rotation matrix
that rotates {i} to align with frame {g}. The target position in
both global and image coordinate frames can now be related
mathematically as:

gpT = gd + R(Λ)ipT . (5)

When homogeneous coordinates are used, the translation and
rotation of (5) can be combined in one matrix operation:

T(Λ, gd) =

[
R(Λ) gd

0 1

]
. (6)

The inverse relationship is:

T−1(Λ, gd) =

[
RT(Λ) −RT(Λ)gd

0 1

]
(7)

which can be verified by computing T(Λ, gd)T−1(Λ, gd) =
I. The inverse relationship of (7) can be used to compute co-
ordinates of the target in the image plane give the coordinates
of the target in the global frame:

ixT
iyT
izT
1

 =

[
RT(Λ) −RT(Λ)gd

0 1

]
gxT
gyT
gzT
1

 . (8)

The vector on the left-hand side is expressed in homoge-
neous coordinates in the image plane reference frame, but it

expresses the coordinates of the target itself and not of the
target’s image on the image plane.

D. Transformation of an Object’s Global Coordinates

The next step is to combine the projection, rotation, and
translation operations into one expression so that the coordi-
nates of the target’s image on the image plane can be computed
from the target’s global coordinates. The sought expression can
be made simpler by considering overall problem in terms of
an airborne aerial delivery system as the observer, and a ship
on the sea surface as the target. The z coordinate of the target
must be zero if the origin of the global coordinate system
is at sea level and the effects of vertical wave motion and
the height of the ship’s landing area above the sea surface
are neglected. This assumption of gzT = 0 allows the third
element of the target coordinate vector to be eliminated along
with the third column of the rotation and translation matrix.
Then, the global coordinates of the target can be computed
from the image plane measurements by:

uv
1

 =

0 f 0 0
0 0 f 0
1 0 0 0


3rd column removed︷ ︸︸ ︷[

RT(Λ) −RT(Λ)gdo

0 0 1

]
︸ ︷︷ ︸

M

w′gxTw′gyT
w′


(9)w′gxTw′gyT

w′

 = M−1

uv
1

 (10)

where the product of the 3×4 projection matrix and the 4×3
(reduced column) rotation and translation matrix is called M.
Equation (10) indicates a noteworthy result: because the target
is constrained to a 2D plane, a reverse projection is possible.
Given coordinates of the target’s image on the image plane,
the target’s physical location on a 2D world surface can be
computed.

IV. TARGET ESTIMATION ALGORITHM

With a relationship established between the state of the
target, and a measurement available to a visual sensor, a
state-space-based estimation algorithm is now developed that
enables calculation of relative pose between observer and
target. The state of the surface target is naturally described in
terms of its 2D position and its speed and course. As will be
shown, this state vector formulation in terms of (x, y, V, ψT )
allows measurements from the image plane to be used to
compute both the target’s location and its orientation.

A. Estimating the Target’s Position

The nonlinear vector function f(x) used to compute the
state derivatives is fairly straightforward and is shown here in
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terms of the derivatives of the individual states:

ẋ = V cosψT (11)
ẏ = V sinψT (12)

V̇ = 0 (13)

ψ̇T = 0. (14)

Equation (10) contains a nonlinear relationship between the
available image plane measurements and two of the elements
of the target’s state vector. To deal with this nonlinearity, the
measurement equation will be cast as:

g(z) = Hx + γ. (15)

where the vector g(z) is the pseudomeasurement vector and
γ is the vector of pseudomeasurement noise.

B. Estimating the Target’s Orientation

Returning to the assumption that the target is a vessel
underway on calm seas, the target can be assumed to be an
oblong object constrained to lie horizontally on the world’s
surface. Also, the target’s motion is constrained to be in the
direction of its own longitudinal axis, which would lie on
a 2D surface within the global coordinate system. Thus, the
orientation of the target on a 2D surface in the world (hence
its course, ψT ), may be inferred by the orientation ψi of the
oblong image on the image plane. Assuming that the ends of
the target’s image, the bow and stern features, are able to be
extracted flawlessly from the target’s image, the orientation of
the image then can be computed easily.

Consider the depiction in Fig. 3 of the target with bow and
stern points identified in the global frame (Fig. 3a). Let ∆gxTf

and ∆gyTf
be the difference in global coordinates between the

bow and stern features of the target. Therefore, there are two
positions of interest for the target that are contained in the
following vectors:

gpT1
=


gxTf
gyTf

0
1

 and gpT2
=


gxTf

+ ∆gxTf
gyTf

+ ∆gyTf

0
1


(16)

where (gxTf
, gyTf

) are the coordinates of one feature, such
as the bow of the target ship. The third coordinate of each
vector is zero because the entire target ship, including bow and
stern, must line on the world surface plane. Each of the vectors
in (16) thus loses its third element, and then each serves as
input to (9) to compute image plane coordinates (u1, v1) and
(u2, v2) corresponding to the bow and stern locations of the
image. w1u1

w1v1
w1

 = M(Λ, gd)

gxTf
gyTf

1

 (17)

w2u2
w2v2
w2

 = M(Λ, gd)

gxTf
+ ∆gxTf

gyTf
+ ∆gyTf

1

 . (18)

∆gxt f

∆gyt f

ψt

(a) Actual target in global
coordinate frame.

∆v

∆u

(b) Image of target in
image plane.

Fig. 3. Target features in global frame (a) and image features on image
plane (b). Bow and stern features on the target in the global coordinate frame
are related to these same features on the image of the target in the image
plane.

In (17) and (18), the notation M(Λ, gd) emphasizes that M
depends only on the location and orientation of the observer,
not the target.

Equations (17) and (18) can be resolved together to produce
an expression relating the horizontal and vertical differences
on the image plane between bow and stern features, and the
corresponding differences on a plane in global coordinates for
the target’s actual bow and stern. The resulting expression is:[
w∆u
w∆v

]
=

{
M(1 : 2, 1 : 2)−

[
u
v

] [
M(3, 1)M(3, 2)

]}
︸ ︷︷ ︸

S

[
∆gxTf

∆gyTf

]
.

(19)
In (19), a MATLAB-like notation is used to indicate a

submatrix of M consisting of the first two rows and first
two columns (M(1 : 2, 1 : 2)), and also the individual scalar
elements of the matrix M, such as the third row, first column
(M(3, 1)). Also in (19), w is a scale factor for homogeneous
coordinates, and ∆gxTf

and ∆gyTf
are meant to convey

changes in global coordinates of target features, namely the
difference between bow and stern positions.

The 2× 2 matrix indicated as S in (19) can be inverted to
obtain: [

∆gxTf

∆gyTf

]
= S−1

[
w∆u
w∆v

]
. (20)

The target’s computed course in the global coordinate system
then is simply

ψT = arctan

(
∆gxTf

∆gyTf

)
. (21)

C. Missing Measurements and Epipolar Geometry

A noteworthy aspect of this particular visual estimation
problem is that the camera is fixed to the body of the ADS
and rotates with it. These rotations are quite pronounced in
flight; therefore, the duration that the target is out-of-frame is
significant. An advantage is gained from casting this situation
in terms of multiple-view geometry, whereby the instants when
the target exits the field of view, and when it re-enters the field
of view are characterized as two views of the same scene. Of
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gd2

gd1

∆gpT

{g}

(a)

Λ1
Λ2

gd2 −∆gpT

gd1

{g}

(b)

Fig. 4. Two views of the target. Actual observations of the target are separated
in time and space (a). Assuming constant target motion, the two views can
be brought together (b).

course, the target has moved between these two instants of
time, but with the help of the assumption that the target’s
motion has constant course and speed, the second view of the
target (entering frame) can be properly shifted in time so that
it coincides with the first view. Assuming that the target image
can be condensed to a single point, for example the centroid
of the target, then the two views are of the very same point.

Consider two views of the same point target depicted in
Fig. 4a. This depiction is of two separate time instants at which
the observer positions and orientations with respect to global
reference frame {g} are (d1,Λ1) and (d2,Λ2). The target is
out of the field of view of the observer between these two time
instants, and the distance that the target has traveled over this
duration is ∆gpT . In Fig. 4b, the second observation has been
shifted by the movement ∆gpT of the target during the time
that the target was out of view. This calculation is equivalent to
retarding the second observation in time because the velocity
of the target is assumed to be constant. Thus, Fig. 4b depicts
a situation where there are effectively two views of the same
target.

The epipolar constraint stipulates that when there are two
views of the same object in two different image planes, the
location if the image in one plane constrains the set of possible
image locations in the second image plane, provided that the

f2 f1P

P ′

distance s′

vector c

Fig. 5. Epipolar constraint with both image planes. When the target reappears
at location P ′, distance s′ is the distance between the location of the image
of P ′ and the epipolar constraint line.

baseline vector between the two image planes is known. In
the case at hand, the set of possible image locations is the
epipolar line, which is established in the first-in-view image
plane by the location of the previous image on the last-
in-view image plane. A scalar measurement can be made
whose value is the distance between the target centroid, at
the instant that the target returns to view, and the epipolar
line. Let this measurement be called s′. In Fig. 5, both image
planes are shown together, with the left-hand image plane
representing last-in-view (target exiting frame), and the right-
hand image plane representing first-in-view, or target returning
to the frame.

The geometry has been contrived to be simple in Fig. 5,
where f1 and f2 are the focal points of the two image planes,
and c is the vector along the line joining the two focal points.
Point P is the target’s centroid position at the instant of
leaving the frame, and it is coplanar with line c in a perfectly
horizontal plane in this depiction. Point P ′ represents the
target’s centroid position at the instant of re-entering the frame.
Ideally, because the returning-to-frame view has been shifted
in time to coincide with the leaving frame view, points P and
P ′ should also be coincident. Figure 5 depicts the case where
P and P ′ are not coincident, and scalar distance s′ is shown
as the distance in the image plane between the aforementioned
epipolar constraint line, and the intersection point of the image
plane itself and the line of sight between f2 to P ′.

Another interpretation of the epipolar constraint is that it
stipulates that the lines of sight v1 and v2, which are rays
from each of the focal points toward the target, must both be
coplanar with baseline c joining the two focal points. Thus, the
scalar triple product of v1, v2, and c should be zero; therefore,
in a perfect situation, distance s′ should be zero:

vT
1 (c× v2) = 0 = s′. (22)

For implementation, scalar distance s′ is split into two com-
ponents by splitting the baseline vector c into two compo-
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nents: one depending only on observer motion, and the other
depending only on target motion. Let these two components
of baseline vector c be labeled c1 and c2, respectively. The
change results in the two quantities used in the estimation
algorithm:

vT
1 [(c1 + c2)× v2] = 0 (23)

vT
1 (c1 × v2)︸ ︷︷ ︸

s

= vT
1 (v2 × c2)︸ ︷︷ ︸

ŝ

(24)

where scalar value ŝ is called the predicted scalar measure-
ment and is calculated based on the component containing the
target’s motion, and scalar value s is called the scalar mea-
surement and is calculated from component c1 that depends
on the observer’s motion.

The vector cross-products in (24) must have both operands
expressed in the same coordinate frame. To this end, rotation
matrices serve to transform vectors from one coordinate frame
to another. Note that the baseline vector c and the lines-of-
sight vectors v1 and v2 are all free vectors, so locations of the
coordinate frame origins do not matter, and no translations are
required. The full expressions for scalar measurement s and
predicted scalar value ŝ that include these rotation matrices
are:

s = vT
1

{
RT(Λ1)R(Λ2)

[
RT(Λ2) (gd1 − gd2)× v2

]}
(25)

ŝ = vT
1

{
RT(Λ1)R(Λ2)

[
v2 ×RT(Λ2)∆gpT

]}
. (26)

Predicted scalar value ŝ can be computed as the multiplica-
tion of row vector hT and the target velocity extracted from
estimated state vector x̂:

ŝ = vT
1 RT(Λ1)R(Λ2)S(v2)RT(Λ2)︸ ︷︷ ︸

hT

Rt(ψ)

0 0 1 0
0 0 0 0
0 0 0 0

∆tx̂

(27)
where time interval ∆t is defined as a multiple of the funda-
mental sampling rate: N · Ts and matrix Rt(ψ) resolves the
target’s course into 2D planar global coordinates. A compact
expression for predicted scalar value ŝ can be written as:

ŝ = hTNTs

gVx
gVy
0

 , (28)

where, in this expression, gVx and gVy are two components of
the target’s velocity vector expressed in the global coordinate
frame.

D. State-Space Estimation

In contrast to the conventional Kalman estimation algorithm,
this additional measurement using the epipolar constraint uses
additional information at the time the target returns to view.
The conventional Kalman estimation algorithm does not use
this additional information, but instead must set the measure-
ment error covariance matrix R to infinity when the target
is not in view. By so doing, the traditional Kalman estimator

ignores all measurements during the out-of-view period and
instead uses only the most recently-computed position, course,
and speed of the target to predict its future position while
running the estimation algorithm with no new data. This
process is also known as dead-reckoning the target position.

The estimator using the epipolar measurement is also not
using measurements when the target is out of view, but the
reason in this case is that the estimator is extending its
sampling interval forward in time until the target returns to
view. The algorithm will not make any more computations
until that time. When the target returns to view, the error
signal in the Kalman state update equation using this epipolar
measurement is actually:

e = s− ŝ = s− hTNTs

gVx
gVy
0

 (29)

instead of
e = g(z)−Hx̂ (30)

as it would be during normal, target-in-view processing.
In this way, the state space estimation algorithm has two

different models, or modes: one mode for the target in view,
and one for the target out of view. The mode for which the
target is out of view has a variable sampling rate because it
takes one sample at the instant that the target is leaving the
image frame, and another sample at the instant that the target
returns to the image frame. For the time interval between
these two instants, the estimator is neither taking samples
nor performing computations. Both modes, or models, are
represented below:

x[n+ 1] = Φ(Ts)x[n] + Gw[n] in view
x[n+ 1] = Φ(NTs)x[n] + Gw[n] returning to view
g(z[n]) = Hx[n] + γ[n] in view

s[n] = hTNTs

gVx
gVy
0

+ γ[n] returning to view

(31)
Note that the state equations were written in terms of discrete-
time state transition matrix Φ, even though in practice, the
state update is calculated using the nonlinear state update func-
tion f . Furthermore, the state transition matrix is written with
the sampling interval Ts (sometimes multiplied by number of
out-of-view intervals N ) as an explicit argument so that the
two rates of the two modes are clearly shown.

V. SIMULATION RESULTS

A simulation was designed using Simulink to evaluate the
benefit of the epipolar constraint measurement over the method
of simply using the target’s dead-reckoning (DR) position when
it is not in view. A very convenient artificial motion was
programmed for the observer in this simulation to achieve a
wide separation between the last-in-view and return-to-view
focal point positions. In Fig. 6, the observer is moving North
to South and crossing the target’s course while its field of
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Fig. 6. Geometry of simulation to evaluate epipolar measurement. The
observer moves across the target’s course so that last-in-view and return-
to-view locations are widely separated.

regard rotates in the horizontal plane. For this simulation, the
observer was programmed to turn away from the target after a
3 s period of observation, then turn back toward the target after
a time delay of 130 s, resulting in approximately two minutes
during which the target was out of view.

The parameters that were adjusted in this model were
measurement noise and measurement error covariance matrix
R. The objective of this set of simulations was to determine
whether the use of the epipolar measurement at the back-in-
frame instant conferred any advantage over an estimator that
simply ignored missing measurements when the target was
out of view, and resumed normal processing when the target
returned to view—the DR method.

The parameter that was varied for the first set of simu-
lations was measurement noise. A nominal set of assumed
measurement noise standard deviation values was chosen for
the physical sensors on the autopilot such as the GPS and the
attitude sensors, and the vector of these values was labeled σ̄.
The elements of vector σ̄ correspond to the assumed standard
deviations of noise applied to each raw sensor measurement
such as observer GPS position, observer orientation, and the
target’s image position on the image plane. For the simulation
runs, both the measurement error covariance matrix R as well
as the actual added measurement noise, were calculated using
multiples of the values of the elements of σ̄.

The first set of simulation runs in this section was conducted
while varying the added and assumed measurement noise
from zero to 2σ̄ to 4σ̄. For the first run with actual added
measurement noise set to zero, measurement error covariance
matrix R was still computed with values of 1σ̄ so that R
would not be a zero matrix. For all these simulations, actual
added process noise was kept at zero to isolate the effect of
measurement noise. From the simulation output, position and
velocity estimation errors are shown in Table I at the instant
that the target returns to view. Along with the estimation error
value, the standard deviation of the estimate is represented as
the square root of the value in the appropriate element of the

TABLE I
ESTIMATION ERRORS WITH LONG OUT-OF-VIEW DURATION.

Position estimation error and standard deviation/m
estimator amount of measurement noise

none 2σ̄ 4σ̄

extended/DR 16.264 11.768 32.313
σ = 27.525 56.608 97.779

extended/epi 14.023 26.938 14.501
σ = 59.808 92.540 151.764

Velocity estimation error and standard deviation/m/s
estimator amount of measurement noise

none 2σ̄ 4σ̄

extended/DR −0.113 0.125 0.312
σ = 0.394 0.534 0.805

extended/epi −0.086 −0.115 −0.016
σ = 0.304 0.585 1.074

extended/epipolar
σP envelope

extended/DR
σP envelope
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Fig. 7. Velocity estimation error after target returns to view. For this
simulation, the target was out of view until 139.5 s of simulation time.

state estimation error covariance matrix P.
In Table I, the velocity estimation error of the extended

Kalman filter (EKF) estimator using the epipolar measurement
is lower in all three cases than that of the EKF using DR;
however, the computed state estimation error values are higher
in two cases than those of the EKF DR estimator.

A history of estimates from the back-in-view instant to the
end of the simulation is shown in Fig. 7; this figure depicts the
velocity estimation error from the same simulation run whose
data was used to construct Table I. In Fig. 7, only the end of the
simulation is shown, with the back-in-view instant occurring
at 139.5 s of simulation time. For the back-in-view instant,
the estimator using the epipolar measurement has a smaller
velocity estimation error; although, both estimators converge
to small levels of error within 2 s.

To explore further the effect of increasing measurement
noise on velocity estimation error, another set of simulations
was executed, this time with matrix R computed with 1σ̄
values, but actual added measurement noise ranging from 5σ̄
to 20σ̄. Velocity estimation errors for these cases are shown in
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TABLE II
VELOCITY ESTIMATION ERROR WITH HIGH MEASUREMENT NOISE.

Velocity estimation error and standard deviation/m/s
estimator amount of measurement noise

5σ̄ 10σ̄ 20σ̄

extended/DR 0.185 0.393 0.942
σ = 0.438 0.434 0.419

extended/epi −0.322 −0.631 −0.609
σ = 0.306 0.333 0.372

Table II. The velocity estimation errors shown therein for the
EKF epipolar estimator are generally increasing with increasing
measurement noise, although not monotonically. Considering
Tables I and II together, it is apparent that the EKF using the
epipolar measurement has a smaller velocity estimation error
in four of the six cases presented.

VI. CONCLUSION

The output of these simulations indicates that the use of
the epipolar measurement does confer an advantage to an
estimator that makes use of the additional information that
the underlying two-view geometry provides. This advantage
appears to remain even for high levels of measurement noise.
Future plans include the hardware implementation of a ma-
chine vision system and the estimator described herein into
the Snowflake prototype ADS for flight testing.
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