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Development of guidance and control algorithms for autonomous solid circular parachutes is addressed. This
effort is a part of the Affordable Guided Airdrop System that integrates a low-cost guidance and control system into
fielded cargo air delivery systems. First, the underlying Affordable Guided Airdrop System concept, architecture,
and components are described. Then a synthesis of a classical optimal control based on Pontrjagin’s maximum
principle is suggested. Then the development of a practical control algorithm is detailed. Simulation and flight-test
results of the final Affordable Guided Airdrop System demonstration are also presented.

I. Introduction

C URRENTLY, high-altitude/low-opening and high-altitude/
high-opening airdropped personnel are the only assets that

can be released from altitudes above 1500 m while still realiz-
ing an acceptable landing accuracy. Aerial missions over Bosnia
in 1993 underscored high-altitude airdropped payload delivery ac-
curacy concerns during operations conducted from above 3000 m
for resupply and humanitarian purposes. (A lot of cargo ended up
at the wrong spots.) Humanitarian-relief airdrops over Kosovo in
1999 and Afganistan in 2001 demanded that airdrop aircraft oper-
ate from even higher altitudes, with an expected further degradation
of payload delivery accuracy.

This urgent need to improve the point-of-use delivery, that is,
“getting the materiel where it needs to be and when it needs to be
there,”1 has led to the Affordable Guided Airdrop System (AGAS)
project, initiated by the U.S. Army and the U.S. Air Force in late
1990s.2,3

The main goal of the AGAS development is to provide a preci-
sion airdrop capability for a delivery system consisting of an existing
fielded cargo parachute system such as G-12 and a standard delivery
container A-22. From the cost standpoint, it is much more effective
to use thousands of flat circular parachutes available in the inven-
tory augmented with a cheap and reliable guidance, navigation, and
control (GNC) unit rather than to design and manufacture new more
sophisticated and much more expensive high-performance aerody-
namic decelerator systems.

The key ideas of the AGAS concept, developed in Refs. 3 and
4, are discussed next. The first step is for the end user to broadcast
a supply request that includes information on where and when it
is needed on the ground. On arrival in the vicinity of the assigned
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drop zone (DZ), a support aircraft (possibly an unmanned air ve-
hicle) drops a wind dropsonde. The wind profile acquired during
this drop allows computation of the reference trajectory (RT) and
of the computed air release point (CARP). (As a part of the AGAS
effort, the Charles Stark Draper Laboratory and Planning Systems,
Inc., developed a highly sophisticated system that provides accu-
rate prognosis of the wind over the DZ and generates a CARP and
RT.5) The delivery aircraft will then be navigated to that point for
air delivery of the materiel (payload). Should the wind estimate and
calculation of the CARP be perfect, and should the aircrew get the
aircraft to this point precisely, then the parachute would fly along the
RT toward the DZ with no control inputs required. However, wind
estimation is not a precise science. Furthermore, calculation of the
CARP relies on less than perfect estimates of the parachute aero-
dynamics, and the flight crews cannot precisely hit the CARP for
each airdrop mission [especially in the case of massive (multiple)
deliveries]. Therefore, the AGAS GNC system is used to overcome
these potential errors.

The ultimate goal of the AGAS system is to allow delivery air-
craft to drop payloads accurately at or above 5500 m, keeping the
aircraft out of the range of shoulder-fired ground-to-air missiles. An-
other benefit of the system is the ability to preaddress each bundle
in a load and to guide the individual bundles to their own prepro-
grammed DZs. Obviously, to accomplish these goals, the AGAS
system needs to be simple, affordable, durable, and reusable. (It
should survive multiple drops without any repairs.) It should not re-
quire major modifications to the standard delivery system’s harness
or bundle, major modifications to the cargo parachute, or a signif-
icant amount of rigger training. The system is required to provide
an accuracy of at least 100 m with a desired goal of 50-m circu-
lar error probable. No changes to the parachute or cargo system
were allowed.

As a result, the AGAS design concept employs a commercial
global positioning system (GPS) receiver and a heading reference
as navigation sensors, an inexpensive guidance computer to deter-
mine and activate the desired control inputs, and application of four
pneumatic muscle actuators (PMAs) to generate control inputs. The
navigation system and guidance computer are secured to an existing
container delivery system, whereas the PMAs are attached to each
of four parachute risers and to the container. Control is affected by
lengthening one or two adjacent risers. On deployment of the sys-
tem from the aircraft, the guidance computer steers the system along
the preplanned RT. The AGAS concept relies on sufficient control
authority to be produced to overcome errors in wind estimation and
in the point of release of the system from the aircraft.

The literature reviewed on the subject showed that precision air-
drop activities to date have focused more on the development of
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the decelerator system and less on the development of avionics and
technologies required for precision GNC. Furthermore, although
autonomous control of the high-glide parafoils has been studied
extensively,6−9 the literature search produced no references to the
autonomous control of a low-glide circular parachute.

The initial work on the development of the AGAS GNC system
used a simple three-degree-of-freedom (DOF) model incorporating
sensor and actuator dynamics and a simple empirical bang–bang
control strategy.3,4,10,11 Two major objectives were pursued. First
was to verify the effectiveness of the predefined-trajectory seeking
control strategy with a good wind estimate vs a control strategy that
simply seeks the target area (TA) without using any knowledge of
the winds. Second was to estimate the impact of changing the char-
acteristics of the sensor suite and actuator dynamics on the overall
system performance. The resulting GNC algorithm was successfully
tested in simulation. However, preliminary flight tests of this GNC
algorithm showed the inadequacy of a 3-DOF model. In particu-
lar, certain physical phenomena have been observed that the 3-DOF
parachute model could not predict.

The present paper discusses recent advancements in the devel-
opment of the AGAS system. Specifically, it addresses the issue
of theoretical synthesis of the optimal control for the given hard-
ware architecture and analysis of optimal control stability. It also
introduces a practical control algorithm motivated by the optimal
control law. This practical algorithm was extensively tested in simu-
lations that incorporate a new 6-DOF model of a controlled circular
parachute developed by the authors.12 The resulting practical control
algorithm was finally implemented on an AGAS guidance computer
and successfully flight tested.13

This paper is organized as follows. Section II contains a brief de-
scription of AGAS architecture and of its components. Section III
includes the classical synthesis of an optimal control law using
Pontrjagin’s maximum principle as well as stability analysis of a
feedback bang–bang control law motivated by the optimal control
analysis. Sections IV and V contain a discussion of the develop-
ment of the flight control algorithm implemented in simulation and
flight. Finally, Sec. VI has a discussion of the setup and results of a
final flight test performed at the U.S. Army Yuma Proving Ground,
Yuma, Arizona (YPG) in September 2001.

II. AGAS Architecture and Components
In general, AGAS may be implemented on any circular parachute.

(A flat circular parachute is the one that when laid out on the ground
forms a circle.) In this study, a standard G-12 parachute was ulti-
mately employed. This 20-m-diam parachute, with 64 suspension
lines, weighs 60 kg and is capable of carrying a payload of up to
1 ton in weight with a descent rate of around 9 m/s (Ref. 14).

A cargo box that is currently employed for the AGAS is a proto-
type adopted from the A-22 delivery container. It is suspended from
the system (Fig. 1) and houses the GNC system, PMA instrumen-
tation, and parachute control unit (PCU).

The PMAs, developed by Vertigo, Inc., are braided fiber tubes
with neoprene inner sleeves that can be pressurized by nitrogen.15

On pressurization, the PMA contracts in length from 7.6 to 5.8 m
and expands in diameter. On venting, it does the opposite (lengthens
on 30%).

When three of four PMAs are pressurized (filled) and one is
activated (vented), this action deforms the parachute, creating an
asymmetrical shape, essentially shifting the center of pressure, and
providing a drive or slip condition. This forces the parachute to glide
in the direction opposite the control action (vented PMA). Two ad-
jacent PMAs can be activated simultaneously. Figure 2 shows both
possibilities (one and two PMAs activated) realized in a computa-
tional fluid dynamics-based simulation¶ and observed in the flight
test during the airdrops at YPG.

¶Data available from Mosseev, Y., “Fluid–Structure Interaction Simula-
tion of the U.S. Army G-12 Parachute,” Rept. 17-01-RDD Ozon, Contract
68171-01-M-6349, online at http://www.mtu-net.ru/mosseev/rd.html [cited
January 2001].

Fig. 1 Scheme of payload suspension.

a) One

b) Two

Fig. 2 PMAs actuated (vented).

The PCU consists of two accumulator tank valves and pressure
circuits and resides in a specially designed container that occupies
space atop a cargo container. The volume of the onboard nitrogen
tanks limits the number of possible fills for all four PMAs to 32 per
drop. PMA fill and vent times remain a constant 5 s throughout each
drop (regardless the of the volume of gas remaining in the tanks).
The GNC electronics package, which is installed into a box in the
payload, is connected to the PCU.

The full weight of the AGAS package to be added to the standard
parachute (including PCU with PMAs, batteries, sensor suite, and
GNC computer) is about 80 kg. When fully charged with gas, the
system weighs about 11 kg more.

Circular parachutes have a very limited ability to overcome winds.
This underscores the importance of having a reference trajectory
that closely matches the flight path of a parachute during an un-
controlled drop. Therefore, there is a strong need to use the latest
available wind profile in the DZ to precompute the CARP and RT.
Delay in parachute deployment from the time a CARP was com-
puted may cause significant degradation in accuracy, even for the
case of a controlled drop. Simulations of uncontrolled drops for the
RT computed at hour 0 and of the parachute being released up to
10 h later16 are shown in Fig. 3. Obviously impact points for later
releases do not coincide with the impact point for the release at hour
0 (the target point). In fact, for this particular set of wind profiles,
touchdown accuracy gradually degraded to more than 3000 m.

III. Synthesis of the Control Algorithm
Based on the AGAS concept introduced earlier, the optimal con-

trol problem for determination of the parachute trajectories from
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Fig. 3 Uncontrolled trajectories with the different wind profiles.

an actual release point to the DZ can be formulated as follows:
Among all admissible trajectories that satisfy the system of differ-
ential equations, given initial and final conditions and constraints
on control inputs, determine the optimal trajectory that minimizes
a cost function of state variables z and control inputs u

J =
∫ T

0

f0(t, z, u) dt (1)

and compute the corresponding optimal control.
In Eq. (1), T is a descent time, which is not known a priori,

not only because of atmospheric turbulence but also because a de-
scent rate also depends on control state. (Activation of each PMA
decreases it by approximately 3%). For the AGAS, the most suit-
able cost function J is the number of PMA activations. However,
this cost function cannot be formulated analytically in the form
given by expression (1). Therefore, other well-known integrable
cost functions were investigated, and the results obtained were used
to determine the most suitable cost function for the problem at
hand.

To determine the optimal control strategy, Pontrjagin’s principle
(see Ref. 17) was applied to a simplified kinematic planar (3-DOF)
model of the parachute. In this condition, the control objective is
to steer the parachute to a single stationary point on a horizon-
tal plane. Obviously this should be done for the final time t f less
than T .

A. Optimal Control
The simplest model describing parachute kinematics in the hor-

izontal plane with four equal on–off controllers (Fig. 4) may be
written as follows:

Ṗ = RU, ψ̇ = C + ζ(t) (2)

(If not explicitly defined, bold letters/symbols denote vectors and
matrices. If coordinate symbol is omitted, local tangent coordinate
frame {I } is assumed.) Here P = [x, y]T represents a vector of posi-
tion errors in the horizontal plane that has to be driven to zero using
the control vector U = [u, v]T . Furthermore, R = I

BR is a rotation
matrix from the body {B} to the local tangent plane (LTP) frame {I }
defined as

R =
(

cos ψ − sin ψ

sin ψ cos ψ

)
(3)

Fig. 4 Projection of the optimization task onto the horizontal plane.

Finally, ψ is a parachute yaw angle (angle between the body x axis
and the x axis of the LTP), C is a constant, and function ζ(t) repre-
sents yaw rate disturbance.

This model approximates the impact on the parachute velocity in
the lateral plane caused by the activation of each of the four PMAs:
u, v ∈ [−V ; 0; V ]. Specifically for the G-12-based AGAS, V is on
the order of 4 m/s.

The Hamiltonian for system (2) can be written as

H = (px , py)RU + pψ [C + ζ(t)] − f0 (4)

where differential equations for the adjoint variables px , py , and pψ

are

ṗx = ṗy = 0, ṗψ = (px , py)

(
u sin ψ + v cos ψ

−u cos ψ + v sin ψ

)
(5)

We consider two cost functionals,

f0 ≡ 1, f0 ≡ |u| + |v| (6)

typical for the minimum-time and minimum-fuel problems. For the
model given by Eq. (2), the minimum-time problem implies that the
parachute must be driven to the origin in minimum time given the
constraints on the control vector U. Note also that in this application,
the second cost function defines the system’s momentum or energy
rather than fuel because AGAS uses gas only to activate PMAs.
(There is no gas expenditure needed to maintain PMA filled/vented).

Importantly, with four on–off controllers available, a circular
parachute can move in only one of eight possible directions with
respect to the body frame. This makes performance of a control al-
gorithm very sensitive to the rotation of the parachute or lack thereof.
Specifically, if the parachute is not rotating, there only exists a single
initial condition for which the two-point boundary-value problem
can be solved. This is the reason for introducing a non-zero yaw
rate in Eq. (2). Furthermore, because the yaw rate can never be pre-
cisely known, the disturbance term ζ(t) was also added. The two
main sources of uncertainty in yaw rate include wind disturbance
and yaw moment due to adjacent PMA activations (see Sec. IV).

According to Pontrjagin et al.,17 the optimal control is determined
as uopt = argmaxH(p, z, u). Therefore, for the time-minimum prob-
lem, the optimal control is given by

u = V sign

[
( px , py)

(
cos ψ

sin ψ

)]

v = V sign

[
( px , py)

(− sin ψ

cos ψ

)]
(7)

Figure 5 shows the graphical interpretation of these expressions.
In general, the vector ( px , py) defines a direction toward the DZ
and establishes a semiplane perpendicular to itself that defines the
nature of control actions. Specifically, if the PMA happens to be
located within a certain operating angle (OA) � with respect to the
vector ( px , py), it should be activated. For a time-optimum problem,
� = π . Therefore, two PMAs will always be active as determined
by the parachute rotation attitude. (We do not address the case of
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Fig. 5 Time-optimal control.

Fig. 6 Example of the time-optimal trajectory and time-optimal
controls.

Fig. 7 Hamiltonian isolines for the time-optimal control problem.

singular control, which in general is possible if the parachute is
required to satisfy a final condition for yaw angle.)

Figure 6 shows an example of a time-optimal trajectory. It con-
sists of several arcs and a sequence of activations. For the sake of
simplicity, ψ̇ = 2 deg/s was taken for this simulation, as observed
in one of the earliest flight tests. [In principle because of symmetry,
no rotation should be observed unless any kind of asymmetry is in-
troduced.] Figure 7 demonstrates two Hamiltonian isoline patterns
corresponding to two instances of time. Because isolines for the
time-optimal problem are straight lines rotating counterclockwise
with 2-deg/s angular velocity, the optimal solution on this graph

(Hamiltonian maximum) can be located in one of four corners of
the controls envelope.

For the fuel-minimum problem, we obtain analogous expressions
for the optimal control inputs:

px cos ψ + py sin ψ ≥ 1 ⇒ u = V

−px sin ψ + py cos ψ ≥ 1 ⇒ v = V

−1 < px cos ψ + py sin ψ < 1 ⇒ u = 0

−1 < −px sin ψ + py cos ψ < 1 ⇒ v = 0

px cos ψ + py sin ψ ≤ −1 ⇒ u = −V

−px sin ψ + py cos ψ ≤ −1 ⇒ v = −V (8)

In this case, each PMA will be employed only when aligned with
the certain direction, meaning � → 0. Figure 8 shows that in this
case Hamiltonian isolines are represented by a rhomboid figure,
which maintains an orientation so that one of its vertexes touches
the control envelope at u = 0 (as shown in Fig. 8 for the particular
instance of time) or v = 0.

In general, any cost function other than minimum time will require
an OA � ≤ π (Fig. 9). (Note that any control with � < 0.5π may
not work at all if the parachute is not rotating.)

Figure 10 shows the effect of the OA’s magnitude on the flight
time, fuel, and number of PMA activations (from vented to filled
state). Note that the nature of the dependence of the number of ac-
tivations on the OA is the same as that of the time of flight. This
implies that by solving the time-minimum problem, we automati-
cally ensure a minimum number of activations. Moreover, it is also
seen that the slope of these two curves in the interval � ∈ [0.5π; π ]
is flat. This implies that small changes of OA from its optimal value
will result in negligible impact on the number of activations. There-
fore, changing the OA to account for the realistic PMA model, as is
done on AGAS (Sec. IV), will not change the number of activations
significantly.

Figure 11 demonstrates the influence of constant yaw rate on
different OAs. The results were obtained for the time-optimal control
problem shown in Fig. 6. Obviously, the smaller the yaw rate is, the

Fig. 8 Hamiltonian isolines for the fuel-minimum problem.

Fig. 9 Generalized case of optimal control.
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Fig. 10 Influence of the OA’s magnitude.

Fig. 11 Influence of a constant yaw rate.

Fig. 12 Flight path computed with usage of a real yaw angle profile.

smaller the number of activations. Decreasing the OA for the same
yaw rate leads to an increase in the number of PMA activations.

Figure 12 includes simulation results for the case where yaw an-
gle from a flight test was used to drive the first equation in Eq. (2),
whereas optimal control was computed using Eq. (7). As can be
seen, the flight-test yaw angle is not smooth. Neither is it mono-
tonic. Although a synthesized optimal control drives the model of
the parachute toward TA, because of the erratic yaw the number of

PMA activations increases to 35 (vs 12 with the monotonic 2-deg/s
yaw rate as seen from Fig. 10). For this particular simulation, the
OA was equal to 2.5 rad. This example illustrates the sensitivity of
the optimal control algorithm to uncertainties in yaw angle. There-
fore, the flight control algorithm must be more robust to these un-
certainties to prevent a significant increase in the number of PMA
activations.

B. Stability Analysis
The minimum-time optimal control strategy obtained in the pre-

ceding section motivates the following feedback control law (7) for
the system of equations (2),

U = −sign(RT P) (9)

where, for any vector ρ∈ �n , we define signρ=
[sign ρ1, . . . , sign ρn]T .

It is easy to show using Lyapunov stability theory that this control
strategy is globally asymptotically stable. Let

L = PT P (10)

denote the Lyapunov function for the feedback system

G =
{

Ṗ = RU,

U = −sign(RT P)
(11)

Then

L̇ = PT Ṗ + ṖT P = −2PT Rsign(RT P) (12)

Because ρT signρ> 0, for any nonzero vector ρ, and because R
is a rotation matrix, we conclude that L̇ < 0, ∀P 
= 0.

As discussed in Sec. III, the time-optimal control strategy cor-
responds to the OA of 180 deg. The same is true for the feedback
control strategy (9). Additional design considerations presented in
Sec. IV have resulted in a control strategy with an OA that is less
than 180 deg.

Therefore, in the remainder of this section we propose to analyze
stability of a control strategy that uses a smaller OA. To do this, we
define a new function sign� : �n × �n → �1 as follows. Let ρ1 and
ρ2 be any two vectors in �n . Then,

sign�arg(ρ1,ρ2) =




1, 2arg(ρ1,ρ2) ≤ �

0, |2arg(ρ1,ρ2) − π | < �

−1, otherwise (13)

Now using Eq. (13), we define the feedback control strategy
(Fig. 13)

U =







−sign�arg

(
RT P

‖RT P‖ ,

[
1

0

])

−sign�arg

(
RT P

‖RT P‖ ,

[
0

1

])


 , P 
= 0

0, otherwise (14)

Clearly, for � = π , Eq. (14) reduces to Eq. (9). Let the Lyapunov
function L be defined in Eq. (10). Then

L̇ = −2PT R




−sign�arg

(
RT P

‖RT P‖ ,

[
1

0

])

−sign�arg

(
RT P

‖RT P‖ ,

[
0

1

])


 (15)

Define a function signε : �1 → �1 analogous to Eqs. (13)

signεa =




1, a ≥ ε

0, |a| < ε

−1, a ≤ −ε
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Fig. 13 Illustration of
the control strategy in
terms of function (13).

Fig. 14 Possibility of absence
of asymptotic stability.

Let

a1 =
{(

RT P
‖RT P‖

)T

,

[
1

0

]}

a2 =
{(

RT P
‖RT P‖

)T

,

[
0

1

]}
, ε = cos

(
�

2

)

Then (Fig. 14)

sign�arg

(
RT P

‖RT P‖ ,

[
1

0

]}
= signεa1

sign�arg

(
RT P

‖RT P‖ ,

[
0

1

])
= signεa2, RT P = ‖RT P‖

[
a1

a2

]

Furthermore, for ∀P 
= 0,

L̇ = −2‖RT P‖[a1 a2]

[
dsignεa1

dsignεa2

]
= M‖RT P‖ (16)

where

M =


−4, a1 ≥ ε, a2 ≥ ε ∨ a1 ≤ −ε, a2 ≤ −ε

−2, −ε < a1 < ε, a2 ≥ ε ∨ a1 ≥ ε, −ε < a2 < ε

−2, −ε < a1 < ε, a2 ≤ −ε ∨ a1 ≤ −ε, −ε < a2 < ε

0, |a1| < ε, |a2| < ε

The last expression indicates that the candidate Lyapunov func-
tion L = PT P does not guarantee asymptotic stability for the feed-
back control strategy (14) when |a1| < ε and |a2| < ε. As illustrated
in Fig. 14, this situation can occur only when � < 0.5π .

Therefore, the feedback strategy (14) guarantees global asymp-
totic stability in the sense of Lyapunov for any � ≥ 0.5π .

IV. Flight Control Algorithm
As discussed in Sec. II, the activation box for PMAs is capable

of only bang–bang control. Optimal control analysis of a simplified
parachute model discussed in Sec. III suggested that for the cost
functions considered, bang–bang is also the optimal control strat-
egy. Furthermore, this analysis led to an important concept of an OA,

which was used to define the basic control concept for AGAS. Be-
cause for a given OA the bang–bang control strategy was shown to
minimize the number of activations for a planar model, this strategy
was employed to get the parachute to within a predefined altitude-
dependent TA (defined by inner and outer cones discussed next)
and then for the remainder of descent to stay within this area. In
addition, this basic strategy must be made robust to uncertainties in
yaw motion. (As mentioned earlier, a sensor suite was installed on
top of a payload, so that some discrepancy exists between the mea-
sured heading reference and the real attitude of the canopy.) These
considerations were used to develop the flight control algorithm for
AGAS and are detailed next.

A. Basic Control Architecture
When the relatively low-glide ratio (GR) of circular parachutes

is considered, the AGAS can only overcome less than 4-m/s
wind. Therefore, it is imperative that the control system steers the
parachute along a prespecified RT obtained from most recent wind
prediction. This can be done by comparing the current GPS position
of the parachute with the desired one on the RT at a given altitude
h to obtain the position error

P(h) = PAGAS(h) − PRT(h) (17)

This position error P(h) is computed in LTP frame with an origin
in the TA and is then converted to the body axis using an Euler angle
rotation RT . The resulting body-axis error vector

PB = RT P (18)

is then used to identify the error angle (EA) λ

λ = argPB (19)

As opposed to parafoils, circular parachute angular dynamics is
characterized by coning motion. Coning motion is represented by
coupled oscillations in pitch and roll. Therefore, when averaged over
one period, pitch and roll angles are zero, and it is sufficient to use
heading angle only when computing rotation matrix R in Eq. (18).

In turn, the EA is then used to define what PMA, i = 1, . . . , 4
must be activated:

i =




1, if λ ≤ (�/2) ∨ λ ≥ 2π − (�/2)

2, if λ ∈ [(3π/2) − (�/2); (3π/2) + (�/2)]

3, if λ ∈ [π − (�/2); π + (�/2)]

4, if λ ∈ [(π/2) − (�/2); (π/2) + (�/2)] (20)

[By definition λ is counted from PMA 3 counterclockwise, that is, in
the situation shown as an example in Fig. 15, PMAs 2 and 3 would
be activated (vented)].

As suggested in Sec. III, to account for the refill time and sensor
errors, the OA was set to � ≈ 2.5 rad instead of � = π . (On the
earliest AGAS versions, refill time was not constant and was equal
to about 20 s at the end; that for the yaw rate of 2 deg/s gives around
40 deg.) This still allows the activation of a single control input or
two simultaneous control inputs without significant degradation of
AGAS performance (Fig. 10). Furthermore, it is greater than π/2
and, therefore, within the stability range for the OA.

Fig. 15 Control-activation rule.
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Fig. 16 Outer and inner cones.

B. Outer and Inner Cones
First, the initial error after deployment should not exceed a certain

value because of AGAS’s limited control authority. This area of
attraction has the radius RA around the RT that can be roughly
estimated by a simple formula:

RA(h) = 0.8k�GRmaxh (21)

where k� ≈ �π−1. The coefficient k� is approximated by using
the data given in Fig. 10, GRmax for the G-12-based AGAS with
two adjacent PMAs activated is equal to 0.52 (Ref. 13), and the
coefficient 0.8 accounts for real-world yaw profile.

To eliminate unnecessary activations of PMAs, a tolerance (outer)
cone was established (Fig. 16).4 Its radius at the CARP (at an altitude
of 3000 m) is �outer(3000) = 200 m, and it decreases linearly to
�outer(0) = 100 m radius circle at the TA (at ground level). Should
the magnitude of the position error in the lateral plane |PB(h)| be
outside of this tolerance cone,

|PB(h)| > �outer(h) (22)

a control is activated to steer the system back to the planned RT.
When the system is within the inner cone �inner

|PB(h)| < �inner (23)

(which is set to 60 m radius regardless of altitude) the control is dis-
abled, and the parachute drifts with the wind (�inner was selected to
account for the refill time) until the outer cone is reached and control
is activated again. These inner and outer cones can be interpreted as
altitude-dependent hysteresis surfaces.

The basic control strategy uses the following activation rule: Both
the tolerance cone and the operating angle constraints must be active
for a given PMA to be activated.

C. Robustness Issues
The control algorithm just outlined was flight tested at YPG. As

expected, the number of commands to activate PMAs was unac-
ceptably high. This resulted in a premature emptying of onboard
nitrogen tanks, thus, leaving the AGAS with no control authority at
the bottom of descent. Analysis of flight-test data indicated that this
was caused by frequent yaw angle changes and that these changes
occurred when one of the adjacent PMAs was actuated while the
other one was in transition from vent to full or vice versa.

Figure 17 explains this phenomenon. If one PMA is activated
(vented), and an adjacent PMA is performing a transition from one
state to another, this causes a yaw moment Mc. This moment can be
useful (when the direction of rotation of the vector PB is opposite to
the direction of Mc), or harmful (vice versa). In the latter case, the
rotation of the parachute under the action of Mc causes a deactivation

a) Positive b) Negative

Fig. 17 Effect of PMA transition moment.

Fig. 18 Two ways of decreasing the influence of yaw oscillations.

command to the PMA that was just activated. Moreover, during this
deactivation the useful moment in turn makes the situation even
worse. This case is shown in Fig. 18a, where shaded circles denote
activated state of any PMA.

To eliminate unnecessary activations, delay logic was introduced
in each PMA channel (Fig. 18b). Any new command that requires
change in the PMA state triggers the delay timer (circle with a grid
inside in Fig. 18b). While the delay timer is active, no command is
executed including the triggering command. At the end of the delay,
the timer is reset, and the first available command (circle with waves
inside in Fig. 18b) is executed until the next command that requires
change in the PMA state triggers the delay timer again. (This simple
logic was used in lieu of a filter due to programming constraints.)

Another approach that helps reduce the number of unnecessary
activations and that meets programming constraints is to use hys-
teresis as shown in Fig. 18c. The size of a hysteretic zone is adjusted
to exclude recurring activations.

Both delay and hysteresis angle values can be adjusted as a func-
tion of system dynamics, and, in principle, they achieve the same
result.

D. Prediction Term
Another approach that drastically improves robustness in the pres-

ence of yaw oscillations is to introduce a derivative term into the
control logic (18) as follows.

First, change inequalities (22) and (23) to

|RT (P − kcṖ)| > �outer, |RT (P − kcṖ)| < �inner (24)

where coefficient kc should be adjusted to provide better perfor-
mance (smallest overshoot). This softens the outer and inner cone
edges. For example, if AGAS is approaching the inner cone with
high planar velocity rather than slowly drifting into it, it is better
to deactivate (fill) all PMAs earlier than would be done by the con-
trol strategy based on inequality (23). On the other hand, if AGAS is
leaving the outer cone with a high planar velocity, it is worth activat-
ing (venting) appropriate PMA(s) earlier than it would be done by
inequality (22) to prevent further rapid increase of the radial error.

Second, redefine the EA to be

λ = arg{PT (P + kr Ṗ)} (25)

where kr determines the delay in the execution of next command de-
fined by inequality (22), similar to the one discussed in the preceding
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Fig. 19 AGAS deployment and risers untwisting sequence.

Fig. 20 Control actions history right after release.

section. Compare the definition of the EA in Eq. (25) with that in
Eq. (19).

Notice that expressions (24) and (25) have opposite signs for the
derivative term. In expression (24), the negative sign accelerates
control action, whereas in expression (25), it does the opposite,
therefore reducing sensitivity to the oscillations in yaw.

E. Target-Seek Strategy
For the case when available wind prediction is either too old or

nonexistent, an alternative to tracking an RT is proposed. For this
purpose, Eq. (17) should be replaced by

P(h) = PAGAS(h) − kwPRT(h) (26)

When wind prediction is available, kw = 1. When wind prediction
is either too old or nonexistent, kw = 0, Eq. (26) becomes

P(h) = PAGAS(h) (27)

An appropriate value of kw can be determined by comparing real-
time motion of AGAS during a drop with its predicted response
generated by the onboard model. In fact, assuming the model is suf-
ficiently accurate, it can be used to determine errors in the predicted
wind profile.

F. Deployment Delay
As a safety precaution, the GNC system starts implementing con-

trol commands 25 s after the initial deployment. This time is needed
for the AGAS to be released, the main canopy to be fully deployed,
and risers to be untwisted, as shown in Fig. 19.

By design, the initial shock during deployment is absorbed by
Kevlar® load lines. Thus, all PMAs are initially vented. (When
vented they are longer than Kevlar load lines.) The first command
sent and executed after the 25-s deployment delay is to fill all
PMAs (Fig. 20). After an additional 5 s, any other command can be
executed.

V. Nonlinear Simulation Results
A. AGAS Model

The control algorithm discussed in Sec. IV was first tested in a
simulation environment using an AGAS model developed in Ref. 12.
This model assumes a low-speed descent (with the main canopy fully
deployed) and is a complete nonlinear 6-DOF model of a controlled
G-12 parachute. This simulation also included a model of the PMA

Fig. 21 AGAS model vs real AGAS drop.

dynamics. Figure 21 shows an example where the three-dimensional
position of AGAS from a flight test is compared to that generated by
the model. The model output matches flight-test data fairly well, with
only a 15-m difference between impact points (IPs). The number of
PMA activations is the same and is equal to 14.

B. Simulation Analysis
Extensive simulation analysis was done to test the flight control

algorithm, to determine the accuracy requirements for the sensor
suite and the control authority requirements for PCU, and to estimate
AGAS overall performance. Some of these results are given next.

Figure 22 showns the influence of the OA’s magnitude on con-
trol performance. In this case, only the basic control algorithm was
tested, that is, no cones, delay, hysteresis, or any other additional
features designed to minimize the number of activations discussed
in the preceding section were included. Each graph represents radial
error vs current altitude during the simulated drops. The target is at
(0, s0) on the graph.

Whereas simulation with the OA = 180 deg ensures the best ac-
curacy of the predefined RT tracking, it also requires 53 activations.
(Compare this with 35 activations obtained in simulation with the
same yaw profile in Fig. 14 when using 3-DOF model.) With the
decrease of OA, the number of activations also decreases (17 for
� = 90 deg and 14 for � = 60 deg). However, touchdown accuracy
degrades as well.

The grayscale bar in the top-left portion of Fig. 22 indicates
whether any PMA was activated during the simulated drop for each
OA. Obviously with � < 90 deg (top strip), blind sectors with no
PMA activation becomes possible (see Sec. III).

Figure 23 shows the impact of introducing outer and inner cones
on the control performance. The operating angle in this simulation
and hereafter was � = 143 deg, and the number of activations was
9 (as opposed to 24 without cones). Obviously this was achieved by
not activating PMAs while between cones. (See the bar similar to the
one in Fig. 22 in the top-left corner of Fig. 23). This also results in
a slight degradation of the touchdown accuracy. (From about 700 m
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above DZ, the wind blew the parachute away from TA; however,
neither PMA was activated because the parachute was inside the
outer cone.)

Although nine activations seem to be an excellent result (for a
given CARP generated using the most recent wind profile), further
analysis revealed that almost half of the activations were due to
yaw oscillations. As discussed in the preceding section, unneces-
sary activations can be reduced by introducing delay or hysteresis.

Fig. 22 Simulations with different ∆ (OAs).

Fig. 23 Introducing the cones.

a) b)

Fig. 24 To fight yaw oscillations, introduction of a) delay and b) hysteresis.

Figure 24 gives an idea of how these features affect performance of
the system. In addition, it was discovered that although the delay
does not affect the number of PMA activations (for this simulation,
it remained approximately the same 9, 9, and 10 for 0-, 5- and 10-s
delay, respectively), the EA hysteresis not only improves perfor-
mance but decreases the number of activations as well: 9 for 0 deg,
and 5 for ±5 and ±10 deg. Therefore, all of the following simulation
results include the EA hysteresis of ±5 deg.

Figure 25 shows the effect of introducing a prediction term (24).
As expected, the overall performance improves. (Trajectory stays
strictly between cones.) However, this term leads to a certain in-
crease in the number of PMA activations. (The dead zone between
two soft-edge cones is smaller then between solid-edge ones.) For
this particular simulation, the number of activations was equal to
five with no prediction kc = 0 s, 10 with 5–10 s prediction, and 14
with kc = 20 s.

Figure 26 shows a summary of the preceding discussion and
the decrease in total number of PMA activations when more
sophisticated control logic is employed. As seen, it resulted in a

Fig. 25 Introducing a prediction term.

Fig. 26 Number of PMA activations decrease.
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a) b)

Fig. 27 Algorithm: a) simplified vs b) more advanced with the prediction term.

Fig. 28 RT-tracking vs target-seek trajectories.

significant reduction in the number of PMA activations in compar-
ison with the basic classical control logic. This ensured an almost
sevenfold increase in the reserve with respect to available control
authority (32 activations).

Figure 27 shows an example of Monte Carlo simulation with the
same wind profile and two control strategies. The first one employs
basic terms, cones, and 10-s delay. The second one uses basic terms,
5-deg hysteresis instead of delay, and prediction term (24) with
kc = 25 s. The thick central curves on both graphs represent the RT.
When Fig. 27 is observed and the results of the simulations are
analyzed, it can be stated that the second algorithm performs much
better. Not only is the mathematical expectation of the final position
error for the second algorithm twice as small as for the first one,
but the standard deviation decreases by a factor of three. Whereas
replacing the 10-s delay with a 5-deg hysteresis leads to the fourfold
decrease of the number of PMA activations without a deterioration
of the overall performance, introducing a prediction term costs a
twofold increase of PMA activations so that on average the first
algorithm required twice as many activations as the second.

Finally, Fig. 28 includes the results of a simulation where PI is
defined using Eq. (27), also known as a target-seek control strategy.
These results are compared with the standard RT-tracking strat-
egy (17). All inputs are the same for both simulations including
� = 143 deg, solid-edge cones (around the RT in the first case and
around vertical line stretching upward from the target), and ±5-deg
hysteresis. Both algorithms perform well, requiring only five PMA
activations each.

Figure 28 also includes the simulation run where no control was
used to steer the parachute. Even when being released exactly at the
CARP (with no initial error), the uncontrolled parachute flies away
from the RT ending up with almost 400-m error at the touchdown

Fig. 29 Two AGAS steering toward the same RT.

Fig. 30 Drops, 13 September, 3000 m.

point. Clearly, the reason for this is that the predicted wind profile
was not sufficiently accurate. However, the controlled parachute
with a reasonable algorithm suggested by Eq. (26) handles this sit-
uation fairly well.

VI. Flight Test
A total of about 15 controlled drops were made at YPG to test the

AGAS concept and control algorithm. The final demonstration took
place at YPG during the Precision Airdrop Technology Conference
and Demonstration (PATCAD) on 13 and 14 September 2001.∗∗

∗∗Information about the PATCAD can be found online at the following
YPG-sponsored web site: http://yuma-notes1.army.mil/mtea/patcadreg.nsf
[cited September 2001].
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During preliminary tests, a ground station was used to control
AGAS via a wireless modem.18 The AGAS sent its current position
and yaw angle to the ground station. The ground station processed
the data using the flight control algorithm and then issued appro-
priate commands to the AGAS GNC. For the final drops, all GNC
algorithms were executed aboard AGAS. The downlink message
was used for real-time monitoring during the drop.

The rest of the section summarizes the results of two successful
drops of four AGAS performed during the final PATCAD demon-
stration (Table 1). (On 14 September AGAS-3 quit working half
the way down because of a valve system malfunction.) The miss
distance for three operable AGAS systems released was less than
78 m as oppose to 140–1370 m for uncontrolled parachutes.

Table 1 PATCAD results

Test item Weight, kg IP miss, m

13 September 2002
WindPack 21 515.1
Standard G-12 724 512.2
Standard G-12 773 141.9
AGAS-1 726 76
AGAS-2 726 78

14 September 2002
WindPack 21 1048.6
Standard G-12 726 1371.6
AGAS-3 726 347.3
AGAS-4 726 55.5

Fig. 31 Drops, 14 September, 4500 m.

Fig. 32 AGAS-2 control data.

The same control algorithm employed on AGAS-1 and AGAS-2
led to impact of the two systems during the first drop, as shown in
Fig. 29. For the second drop, different target areas were input into
the GNC systems of the two parachutes to avoid possible collision.

Figure 30 shows the integral data for two first-day drops from the
altitude of 3000 m. The 30-min old wind data was used to compute
the RT. Despite a large initial error, both AGAS steered to the TA
fairly well: 17 and 18 PMA activations were needed to hit the target,
with approximately the same miss distance.

Figure 31 presents the same set of data for the second drop of the
AGAS on 14 September (released at 4500 m). The wind profile used
for this drop was 2 h old. Observe that AGAS-4 drifts away from
the CARP due to a bad wind estimate for the first 1000 m. However,
on leaving the outer cone, it is steered back inside. As soon as the
PMAs inflate on entering the inner cone, the AGAS proceeds to drift
out again.

Figure 32 shows the control-related data for the AGAS-4; 28
PMA fills were needed to hit the target with a 55-m miss.

VII. Conclusions
This paper addressed the development of a GNC system for a

circular parachute. The design methodology presented was based
on the optimal control and Lyapunov stability analysis of the prob-
lem. The optimal control analysis has resulted in the concept of the
OA that turned out to be the central element of the GNC strategy.
The Lyapunov stability analysis has derived the feasible range of the
OAs. As a result, a bang–bang control strategy imposed by the PMA
hardware was developed to drive successfully a circular parachute
to the TA within the prescribed circular error. Furthermore, to re-
duce the number of actuations (the requirement driven by the finite
amount of nitrogen available onboard) the concepts of inner and
outer coned were added. These sufficiently reduced the number of
actuations to make the bang–bang GNC strategy feasible, that is,
the amount of nitrogen available could support the required num-
ber actuations. Further reduction in the number of actuations was
achieved by introducing a derivative term in the control strategy, as
well as hysterisis in the definition of the OA. The paper includes a
thorough simulation analysis of the proposed GNC strategy, as well
as flight-tests results obtained at YPG in September of 2001 during
PATCAD. All of the results, both from simulation and from flight
test, indicate that the proposed GNC strategy achieved and exceeded
the design specifications.
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