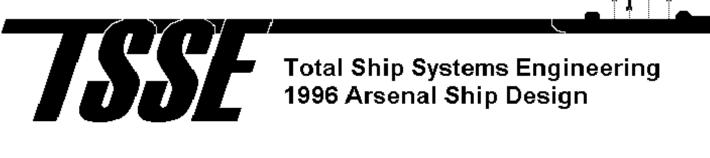
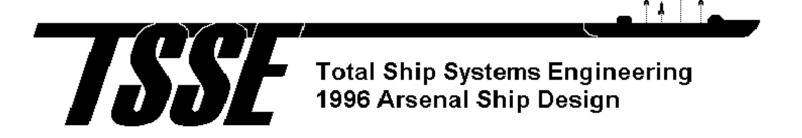


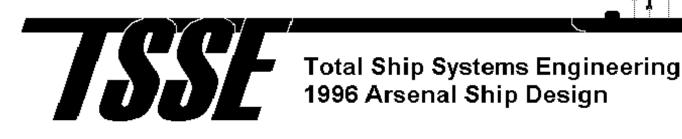
1996 Student Capstone Project An Arsenal Ship Design


TSSE Faculty

- Chuck Calvano, TSSE Program Head, Ship Design
- Bob Harney, Combat Systems
- Fotis Papoulias, Naval Architecture
- Bob Ashton, Shipboard Electrical Power


TSSE PROGRAM

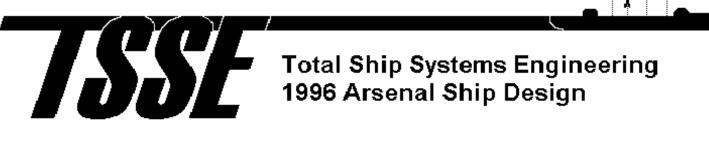
- PROVIDE A BROAD BASED, SYSTEMS ENGINEERING AND DESIGN ORIENTED CURRICULUM...
- FOCUSING ON THE WARSHIP AS A TOTAL ENGINEERING SYSTEM...
- INCLUDING HULL, MECHANICAL, ELECTRICAL (HM&E) AND COMBAT SYSTEMS


WHY THE ARSENAL SHIP?

- ACTUAL ARSENAL SHIP ACQUISITION PROGRAM IN PROGRESS
- STUDENT ARSENAL SHIP DESIGN AT THE REQUEST OF ASSISTANT SECRETARY OF THE NAVY JOHN W. DOUGLASS
 - BACKGROUND INFORMATION FOR NAVY SENIOR PERSONNEL FOR ARSENAL SHIP ACQUISITION

TSSE

TOTAL SHIP SYSTEMS ENGINEERING


OVERVIEW OF PRESENTATION

- TSSE PROGRAM AND PROBLEM STATEMENT
- GENERAL OVERVIEW OF SHIP DESIGN
 - CONCEPT OF EMPLOYMENT AND OPERATIONS
 - COMBAT SYSTEM SELECTION AND DESIGN
 - HM&E DESIGN
- CLOSING COMMENTS
- BREAK
- DETAILED REVIEW OF SELECTED TOPICS

THE PEOPLE

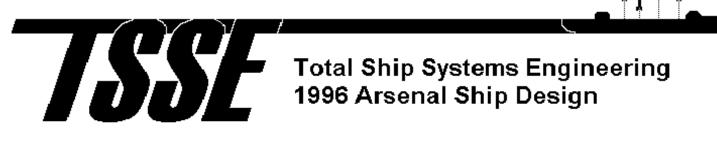
- 15 STUDENTS
 - 10 USN
 - 1 AVIATOR
 - 1 SURFACE WARFARE OFFICER
 - 6 ENGINEERING DUTY OFFICERS (FORMER SWO)
 - 2 ENGINEERING DUTY OFFICERS (FORMER SUB)
 - 4 USCG NAVAL ENGINEERS
 - 1 USMC INFANTRY/LIGHT ARMOR OFFICER

PROBLEM STATEMENT

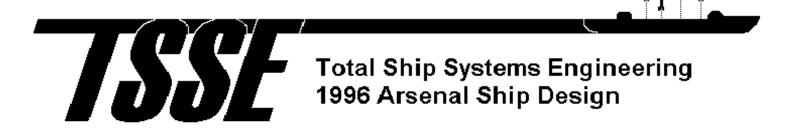
- FIRST ITERATION OF DESIGN FOR AN ARSENAL SHIP
- PRIMARY CONSTRAINTS
 - 550 MILLION DOLLARS MAX USP
 - 50 CREW MAX
 - SURVIVABILITY
 - 22 KNOT SUSTAINED SPEED
 - APPROXIMATELY 500 MISSILE CELLS

OUR APPROACH

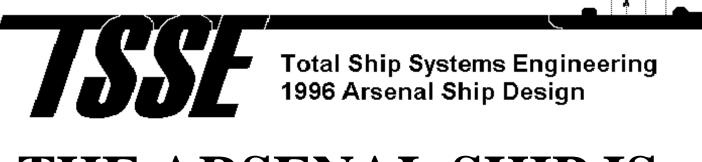
- FUNCTION AS A PROGRAM OFFICE
- PROJECT MANAGEMENT
 - PROF CALVANO
 - PROF HARNEY
- TEAMS
 - OPERATIONS GROUP
 - COMBAT SYSTEMS GROUP
 - HULL, MECHANICAL & ELECTRICAL GROUP


OPERATIONS GROUP

- AREA OF RESPONSIBILITY
 - OPERATIONAL CONCEPTS
 - DAY TO DAY SHIP FUNCTIONS
 - DAMAGE CONTROL
 - MAINTENANCE MANAGEMENT
 - SPECIAL EVOLUTIONS
 - MANNING


COMBAT SYSTEMS

- AREA OF RESPONSIBILITY
 - COMMAND AND CONTROL
 - CEC LINK
 - WEAPONS SUITE
 - SENSOR SUITE
 - MISSILE LAUNCHER SYSTEM


H M & E

- AREA OF RESPONSIBILITY
 - HULL DESIGN
 - PROPULSION PLANT
 - ELECTRICAL PLANT
 - GENERAL ARRANGEMENTS
 - SURVIVABILITY

OPERATIONAL ISSUES

Thinking Outside the Box

THE ARSENAL SHIP IS...

- CREWED WITH LESS THAN 50 PERSONNEL
- <u>NOT</u> A TARGETING AND FIRE CONTROL PLATFORM
- VIRTUALLY UNSINKABLE
- DESIGNED WITH HIGH RELIABLE, LOW MAINTENANCE SYSTEMS
- CAPABLE OF REFUELING AT SEA
- CAPABLE OF TRANSITING THE PANAMA AND SUEZ CANALS
- CAPABLE OF A SUSTAINED SPEED OF 22 KNOTS

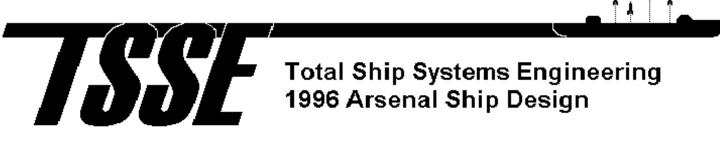
THE ARSENAL SHIP CAN...

- SUPPLY MASSIVE FIREPOWER IN EARLY PHASES OF A CONFLICT
- FULLY INTEGRATE INTO A JOINT WARFIGHTING FORCE
- MAINTAIN FULL TIME COMMUNICATIONS OVER VOICE AND DATA CHANNELS
- CONTINUOUSLY AVAILABLE FOR RAPID MOVEMENT UPON RECEIPT OF STRATEGIC WARNING
- BE FORWARD STATIONED FOR INDEFINITE PERIODS OF TIME

ARSENAL SHIP SCHEDULESHIP ASHIP B

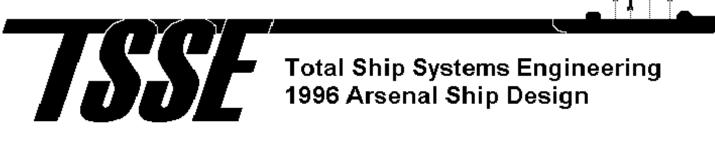
- MONTHS 1-6
 - AT SEA WITH
 SUPPORTED BATTLE
 GROUP
- MONTHS 7 11
 - LOCAL OPERATIONS
 AND MAINTENANCE.
 ARSENAL SHIP IS IN
 THEATER RESERVE.
- MONTH 12
 - CREW TURNOVER

- MONTHS 1 5
 - LOCAL OPERATIONS
 AND MAINTENANCE.
 ARSENAL SHIP IS IN
 THEATER RESERVE.
- MONTH 6
 CREW TURNOVER
- MONTHS 7-12
 - AT SEA WITH
 SUPPORTED BATTLE
 GROUP

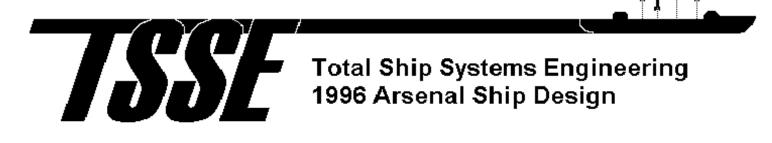


MANPOWER TEMPO

- ASSIGNED TO ARSENAL SHIP PROGRAM
- REPORTS TO TRAINING COMMAND FOR CREW FORMING AND TRAINING


– 6 MONTHS

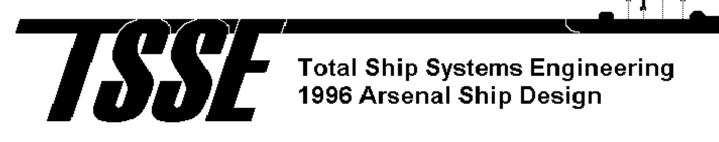
- DEPLOYS TO ARSENAL SHIP
 - 12 MONTHS
- RETURNS TO CONUS
 - POST DEPLOYMENT LEAVE
 - TRANSFERRED
 - JOINS ANOTHER CREW


COMMAND AND CONTROL VISION

- GENERAL SUPPORT ASSET
 - NATIONAL COMMAND AUTHORITY
 - FLEET COMMANDER
- DIRECT SUPPORT ASSET
 - REMOTE MAGAZINE FOR AIR DEFENSE
 - SURFACE FIRE SUPPORT PLATFORM

DESIGN PHILOSOPHY

- HIGH MISSION CAPABILITY
- LOW COST
- SURVIVABLE


DESIGN FOR REDUCED MANNING

- MAX CREW OF 50
- BASIC CONCEPTS
 - EQUIPMENT
 - TECHNIQUES

EQUIPMENT

- AUTOMATION
 - BRIDGE/NAVIGATION SYSTEM
 - MACHINERY CONTROL
- RELIABILITY
 - DIESEL ENGINES/GENERATORS

TECHNIQUES

- SPECIAL EVOLUTIONS
- CASHLESS/PAPERLESS SHIP

TRUST THE COMPUTER

TABLE OF ORGANIZATION

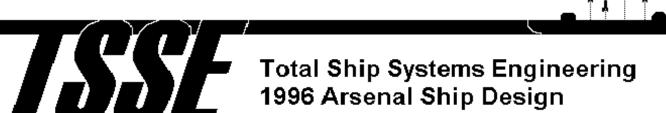
LINE #	BILLET	RANK	QUANTITY	WATCHSTANDER	COMMENTS
1	CAPTAIN	O-5	1	NO	
2	EXECUTIVE/MAINTENANCE OFFICER	O-4	1	YES	CSOW
3	WEAPONS OFFICER	O-4	1	YES	CSOW
4	OFFICER OF THE DECK	O-3	4	YES	DEPARTMENT HEADS
5	JOOD	E-7/8	4	YES	DIVISION OFFICERS
6	COMM SPECIALIST	E-5/6	4	YES	
7	ENGINEERING OFFICER OF THE WATCH	E-7/8	4	YES	DIVISION OFFICERS
8	EW SPECIALIST	E-5/6	4	YES	
9	DECK FORCE	E-5/6	5	NO	
10	HM&E FORCE	E-4/5	5	NO	
11	COMBAT SYSTEM FORCE	E-4/5/6/7	8	NO	ONE E-7 & SEVEN E-4/5/6
12	CORPSMAN	E-5/6	1	NO	
13	MESS SPECIALIST	E-4/5/6	2	NO	ONE E-5/6 & ONE E-4/5
		OFFICER	7		
		CHIEFS	9		
		ENLISTED	28		
			44		

Combat Systems Team

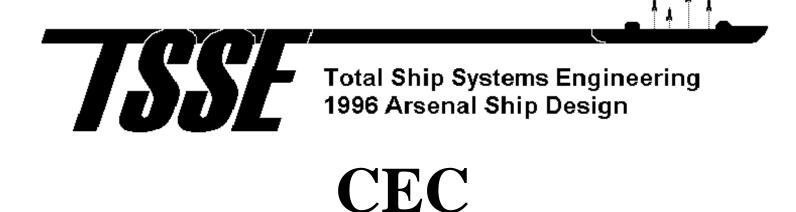
- LCDR Mike Chase, USN
- LT Dennis Florence, USN
- LT Tom Heatter, USN
- LT Chris Holmes, USN
- LT Andy Rowe, USN

Combat Systems Brief

- Combat systems concept of design
- Arsenal Ship combat systems
- Remote firing capability
- <u>A</u>dvanced <u>Tactical Weapon Control System</u>
- Launcher systems
- Communications
- Self defense systems


Total Ship Systems Engineering 1996 Arsenal Ship Design Combat System Concept of Design

- Meet mission requirements
- Best value for acquisition and life cycle cost
- Remote magazine for Aegis control ship
- Capable self defense
- Future growth built in early
- Final design based on ACTD progress


Arsenal Ship Combat System

- SM-2, TLAM, ATACM, VGAS
- Concentric Canisterized Launcher
- CEC/link 16/link 22
- C4I: Joint Maritime Communications Strategy -- MERS, LOMS
- SSDS, RAM, Nulka, IR decoys, Rubber Duck, AIEWS

Remote Firing Capability

- Response times equivalent to control ship
- Seamless joint operations
- Must allow for simultaneous control of missiles from multiple platforms
- Cooperative Engagement Capability
- Advanced *Tactical* Weapon Control System
- Vertical Launching System

- Provides necessary bandwidth
- Proven reliability
- Known hardware
- Easily modified to handle different data types (processor)

ATWCS

- Next generation weapon control system
- Open architecture, COTS
- Expanded storage capacity
- Ethernet networks and fiber optics
- Accommodate all missiles and guns
- Supports time critical data

Integrating Weapons

• SM-2

– Initialization Acquisition Illumination

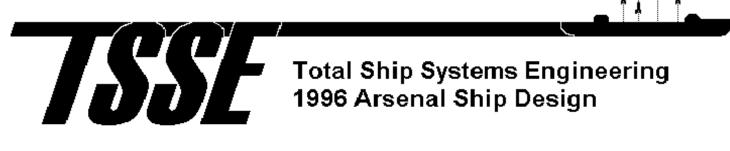
• TLAM

– Planning Alignment VLS

- ATACMS
 - Software GPS Inventory

Launcher Systems

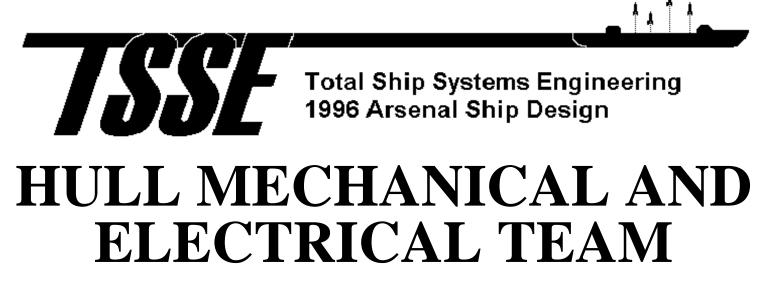
- Concentric Canisterized Launcher concept
 - Increased passive survivability
 - Less maintenance
 - Cheaper, perhaps
- Mk 41 Vertical Launch System
 - Proven technology
 - Affordable, flexible


- Digital Network System
 - -Multifunction Electromagnetic Radiating System
- Integrated Terminal Program
- Automated Digital Network System

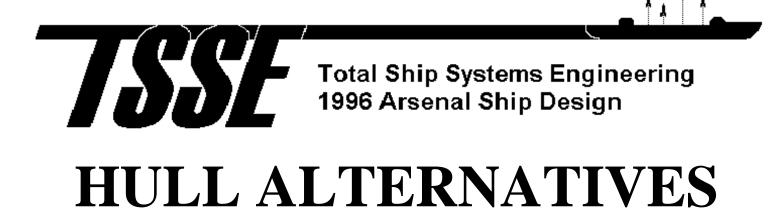
-Low Observable Multifunction Stack

Communication

- Links --CEC/Link 16/Link 22
- HF, VHF/UHF SINCGARS
- OTCIXS, TADIXS, UHF FLTSATCOM
- Milstar, UFO/E, FEP
- Defense Satellite Communications System
- INMARSAT, INTELSAT


Network

- Survivable Adaptable Fiber Optic Embedded Network (SAFENET) and Fiber Distributed Data Interface (FDDI)
- 100 Mbytes/sec, 240 taps
- Cheap, commercial availability/standards
- Government Open System Interconnection Profile (GOSIP)



Self Defense Systems

- SSDS
- AIEWS
- RAM Block 0/1
- Mk 53 Decoy Launching System
- SLQ-49 Rubber Duck
- NULKA

- LT GREGG BAUMANN
- LT JEFF BROWN
- LT JIM SEBASTIAN
- LT BRIAN ELLIS
- LT MIKE FRANCE

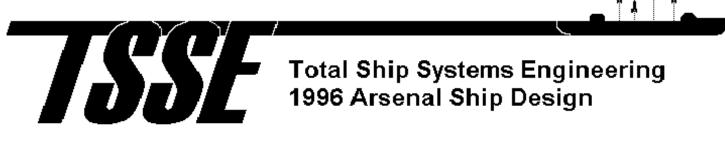
- SWATH / SLICE
- SPECIALTY HULLS
- SEMI-SUBMERSIBLE
- MONO-HULL (TANKER/CARGO)

HULL SELECTION

- USNS T-AO CLASS OILER
- PRINCIPAL CHARACTERISTICS
 - LBP 650 FT
 - BEAM 97.7 FT
 - DRAFT 34.5 FT
 - SPEED 22 KT
 - DISPLACEMENT 38,000 TONS

PROPULSION PLANT

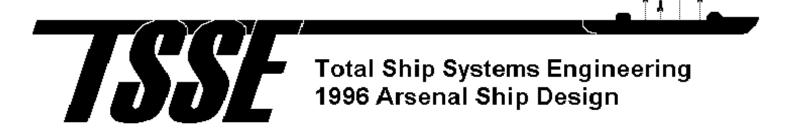
- COLT PIELSTICK 4.2V18
- 30,000 HP INSTALLED
- MECHANICAL TRANSMISSION
- PTO 2500 KW
- CONTROLLABLE PITCH PROPELLERS
 - twin screw



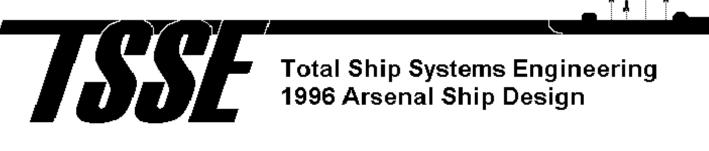
ELECTRICAL PLANT

- AC POWER GENERATION
- ZONAL DISTRIBUTION 15 ZONES 3 BUSSES
- 2 SS POWER TAKE OFF GENERATORS
- 3 SS DIESEL GENERATORS
- 12,500 KW INSTALLED

- DOUBLE HULL DESIGN
- VLS SEPARATION
- 17 TRANSVERSE BULKHEADS
- CONCRETE BALLAST IN DBL HULL
- HULL SIDE PROTECTION
- TOPSIDE SIGNATURE


MEETS MISSION GOALS!

- CREW OF LESS THAN 50
- REMOTE FIRING BATTERY
- OPERATES AS A JOINT PLATFORM
- SURVIVABLE
- SUSTAINED SPEED OF 22 KNOTS
- 500+ VLS CELLS
- AFFORDABLE



COST SAVINGS THROUGH MODIFIED REPEAT

- SAVES DESIGN AND ENGINEERING
- PROVIDES MORE MONEY FOR COMBAT SYSTEMS EQUIPMENT
- PROVEN HULL DESIGN

THINK OUTSIDE THE BOX!

A SPECIAL THANKS TO...

- NSWC DAHLGREN, CARDEROCK AND PORT HUENEME
- NAVAL RESEARCH LAB
- CENTER FOR NAVAL ANALYSES
- SUPSHIP NEW ORLEANS
- DARPA
- TECHNICAL CODES OF NAVSEA
- APPLIED PHYSICS LAB AT JOHN HOPKINS UNIV
- THEATER AIR DEFENSE PROGRAM EXECUTIVE OFFICE
- SMART SHIP PROGRAM OFFICE
- OPERATIONS ANALYSIS DEPARTMENT AT NPS